scholarly journals Effect of Konjac Glucomannan (KGM) on the Reconstitution of the Dermal Environment against UVB-Induced Condition

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2779
Author(s):  
Kyung Ho Choi ◽  
Sung Tae Kim ◽  
Bum Ho Bin ◽  
Phil June Park

Skin layers serve as a barrier against unexpected critical changes in the body due to environmental factors. Excessive ultraviolet (UV) B exposure increases the levels of age-related factors, leading to senescent cells and damaged skin tissues. Widely used as a dietary supplement, konjac (Amorphophallus konjac) glucomannan (KGM) has shown skin regeneration potential in patch or sheet form with anti-inflammatory or immunosuppressive effects. However, the ability of KGM to reconstitute senescent/damaged skin following UV radiation has not been explored. Here, we demonstrate that KGM alleviates skin damage by increasing the proportion of young cell populations in UVB-exposed senescent human epidermal primary melanocytes. Young cell numbers increased depending on KGM dosage, but the senescent cells were not removed. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis showed that mRNA and protein levels of age- and pigmentation-related factors decreased in a manner dependent on the rate at which new cells were generated. Moreover, an analysis of mRNA and protein levels indicated that KGM facilitated youth by increasing cell proliferation in UVB-damaged human fibroblasts. Thus, KGM is a highly effective natural agent for maintaining skin homeostasis by promoting the reconstitution of the dermal environment against UVB-induced acute senescence or skin damage.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lingbi Jiang ◽  
Mingming Yang ◽  
Shihui He ◽  
Zhengyang Li ◽  
Haobin Li ◽  
...  

Abstract Background Colorectal cancer is a malignant gastrointestinal cancer, in which some advanced patients would develop cancer cachexia (CAC). CAC is defined as a multi-factorial syndrome characterized by weight loss and muscle loss (with or without fat mass), leading to progressive dysfunction, thereby increasing morbidity and mortality. ApcMin/+ mice develop spontaneous intestinal adenoma, which provides an established model of colorectal cancer for CAC study. Upon studying the ApcMin/+ mouse model, we observed a marked decrease in weight gain beginning around week 15. Such a reduction in weight gain was rescued when ApcMin/+ mice were crossed with MMP12−/− mice, indicating that MMP12 has a role in age-related ApcMin/+-associated weight loss. As a control, the weight of MMP12−/− mice on a weekly basis, their weight were not significantly different from those of WT mice. Methods ApcMin/+; MMP12−/− mice were obtained by crossing ApcMin/+ mice with MMP12 knockout (MMP12 −/−) mice. Histological scores were assessed using hematoxylin-eosin (H&E) staining. MMP12 expression was confirmed by immunohistochemistry and immunofluorescence staining. ELISA, protein microarrays and quantitative Polymerase Chain Reaction (qPCR) were used to investigate whether tumor could up-regulate IL-6. Cell-based assays and western blot were used to verify the regulatory relationship between IL-6 and MMP12. Fluorescence intensity was measured to determine whether MMP12 is associated with insulin and insulin-like growth factor 1 (IGF-1) in vitro. MMP12 inhibitors were used to explore whether MMP12 could affect the body weight of ApcMin/+ mice. Results MMP12 knockout led to weight gain and expansion of muscle fiber cross-sectional area (all mice had C57BL/6 background) in ApcMin/+ mice, while inhibiting MMP12 could suppress weight loss in ApcMin/+ mice. MMP12 was up-regulated in muscle tissues and peritoneal macrophages of ApcMin/+ mice. IL-6 in tumor cells and colorectal cancer patients is up-regulation. IL-6 stimulated MMP12 secretion of macrophage. Conclusions MMP12 is essential for controlling body weight of Apc Min/+ mice. Our study shows that it exists the crosstalk between cancer cells and macrophages in muscle tissues that tumor cells secrete IL-6 inducing macrophages to up-regulate MMP12. This study may provide a new perspective of MMP12 in the treatment for weight loss induced by CAC.


2021 ◽  
Vol 22 (6) ◽  
pp. 3248
Author(s):  
Andżelika Borkowska ◽  
Maja Tomczyk ◽  
Małgorzata Żychowska ◽  
Wiesław Pilis ◽  
Michał Zych ◽  
...  

The popularity of fasting and restricted food intake is increasing. While the body’s adaptability to dietary insufficiency is crucial for health, molecular mechanisms of adaptive changes are not well understood. Here, we compared the effects of fasting and exercise on the expression of leukocyte genes and proteins involved in the storage, export, and acquisition of iron, an essential element with physiological roles. Healthy men participated in the study (age, 30–70 years; body weight, 60–100 kg; body mass index, 20–29.9 kg/m2). The participants performed an exercise test with a gradually increasing intensity until the individual maximum exercise capacity was reached, before and after 8-d fast. Blood samples were collected before, immediately after, and 3 h after exercise. Gene expression was analyzed by reverse-transcription quantitative polymerase chain reaction and protein levels were analyzed by immunobloting. Eight days of total starvation diet affected the body composition and decreased exercise capacity. Further, fasting decreased the expression of genes associated with iron storage and export, and increased the expression of genes involved in iron acquisition. Conversely, only PCBP2 protein increased after fasting; however, an upward trend was apparent for all proteins. In conclusion, the body adapts to starvation by adjusting iron economy.


Author(s):  
A. E. Chernikova ◽  
Yu. P. Potekhina

Introduction. An osteopathic examination determines the rate, the amplitude and the strength of the main rhythms (cardiac, respiratory and cranial). However, there are relatively few studies in the available literature dedicated to the influence of osteopathic correction (OC) on the characteristics of these rhythms.Goal of research — to study the influence of OC on the rate characteristics of various rhythms of the human body.Materials and methods. 88 adult osteopathic patients aged from 18 to 81 years were examined, among them 30 men and 58 women. All patients received general osteopathic examination. The rate of the cranial rhythm (RCR), respiratory rate (RR) heart rate (HR), the mobility of the nervous processes (MNP) and the connective tissue mobility (CTM) were assessed before and after the OC session.Results. Since age varied greatly in the examined group, a correlation analysis of age-related changes of the assessed rhythms was carried out. Only the CTM correlated with age (r=–0,28; p<0,05) in a statistically significant way. The rank dispersion analysis of Kruskal–Wallis also showed statistically significant difference in this indicator in different age groups (p=0,043). With the increase of years, the CTM decreases gradually. After the OC, the CTM, increased in a statistically significant way (p<0,0001). The RCR varied from 5 to 12 cycles/min in the examined group, which corresponded to the norm. After the OC, the RCR has increased in a statistically significant way (p<0,0001), the MNP has also increased (p<0,0001). The initial heart rate in the subjects varied from 56 to 94 beats/min, and in 15 % it exceeded the norm. After the OC the heart rate corresponded to the norm in all patients. The heart rate and the respiratory rate significantly decreased after the OC (р<0,0001).Conclusion. The described biorhythm changes after the OC session may be indicative of the improvement of the nervous regulation, of the normalization of the autonomic balance, of the improvement of the biomechanical properties of body tissues and of the increase of their mobility. The assessed parameters can be measured quickly without any additional equipment and can be used in order to study the results of the OC.


Author(s):  
N. I. Maslova

The article presents analysis of material and results of their own studies on changes in the permeability of cellular structures, organs and tissues in carp, which is of great importance in determining age-related indicators. The cells permeability in liver and gonads estimation was carried out under the experimental base of VNIIR on two carp genotypes during the pre-spawning period. The carp groups taken for analysis differed significantly in their genotypes. In females of the Khrapunov group the fecundity was 2023.0 thousand units, while the number of oocytes filled with yolk was only 0.7%, in the Ostashevsky ones - 1370.0 thousand units and 8.6%, respectively. During estimation the chemical composition of the generative tissue in females and males it was established that the cholesterol and lecithin content in males is higher than that of females, while feeding dependence is observed, especially on the amount of protein in the diet. For example, in females on protein diet contained less glycogen in gonads than on females on carbohydrate diet. Lecithin and cholesterol are higher in males than in females, which corresponds to increasing the Gyurdy Ratio (estimation of cell membrane strength). In spermatogenesis the content of phospholipids and cholesterol in the liver was decreased less than during ovogenesis. This indicates a lower level of synthetic processes in the milts compared with the ovaries. The cholesterol content in sperm is higher than in caviar in 19.6 times, and phospholipids almost doubled. With increasing age, the Gyordy Ratio for caviar decreases, for sperm it increases, the percentage of caviar fertilization increases. As the body age metabolism deteriorates, cellular permeability decreases (the ratio of lecithin and cholesterol changes significantly). At the same time, the permeability of cells in different organs and tissues varies and depends on living conditions, especially feeding and to some extent on the origin. In fish the gross productivity decreases as growth slows down and more energy is spent on adaptation to environmental conditions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anna Gorsler ◽  
Ulrike Grittner ◽  
Nadine Külzow ◽  
Torsten Rackoll

Abstract Objective Neglect after stroke is a disabling disorder and its rehabilitation is a major challenge. Transcranial direct current stimulation (tDCS) seems to be a promising adjuvant technique to improve standard care neglect therapy. Since electric fields are influenced by age-related factors, higher current densities are probably needed for effective treatment in aged stroke patients. Validation of treatment efficacy requires sham-controlled experiments, but increased current densities might comprise blinding. Therefore, a pilot study was conducted to test sham adequacy when using current density of 0.8 A/m2. Whether especially neglect patients who mainly suffer from perceptual and attentional deficits are able to differentiate beyond chance active from sham tDCS was investigated in a randomized cross-over design (active/sham stimulation) in 12 early subacute patients with left-sided hemineglect. Stimulation (0.8 A/m2) was performed simultaneous to standard care neglect therapy. Results Odds ratio of correct guessing an atDCS condition compared to wrongly judge an atDCS condition as sham was 10.00 (95%CI 0.65–154.40, p = 0.099). However, given the small sample size and high OR, although likely somewhat overestimated, results require careful interpretation and blinding success in neglect studies with current densities of 0.8 A/m2 should be further confirmed.


2021 ◽  
Vol 16 ◽  
pp. 263310552110184
Author(s):  
Lavanya Venkatasamy ◽  
Damir Nizamutdinov ◽  
Jaclyn Jenkins ◽  
Lee A Shapiro

Gulf war illness (GWI), is a chronic multi-symptom illness that has impacted approximately one-third of the veterans who served in the 1990 to 1991 Gulf War. GWI symptoms include cognitive impairments (eg, memory and concentration problems), headaches, migraines, fatigue, gastrointestinal and respiratory issues, as well as emotional deficits. The exposure to neurological chemicals such as the anti-nerve gas drug, pyridostigmine bromide (PB), and the insecticide permethrin (PER), may contribute to the etiologically related factors of GWI. Various studies utilizing mouse models of GWI have reported the interplay of these chemical agents in increasing neuroinflammation and cognitive dysfunction. Astrocytes are involved in the secretion of neuroinflammatory cytokines and chemokines in pathological conditions and have been implicated in GWI symptomology. We hypothesized that exposure to PB and PER causes lasting changes to hippocampal astrocytes, concurrent with chronic cognitive deficits that can be reversed by cervical vagus nerve stimulation (VNS). GWI was induced in CD1 mice by injecting the mixture of PER (200 mg/kg) and PB (2 mg/kg), i.p. for 10 consecutive days. VNS stimulators were implanted at 33 weeks after GWI induction. The results show age-related cognitive alterations at approximately 9 months after exposure to PB and PER. The results also showed an increased number of GFAP-labeled astrocytes in the hippocampus and dentate gyrus that was ameliorated by VNS.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Katharina Metzger ◽  
Dirk Dannenberger ◽  
Armin Tuchscherer ◽  
Siriluck Ponsuksili ◽  
Claudia Kalbe

Abstract Background Climate change and the associated risk for the occurrence of extreme temperature events or permanent changes in ambient temperature are important in the husbandry of farm animals. The aim of our study was to investigate the effects of permanent cultivation temperatures below (35 °C) and above (39 °C, 41 °C) the standard cultivation temperature (37 °C) on porcine muscle development. Therefore, we used our porcine primary muscle cell culture derived from satellite cells as an in vitro model. Neonatal piglets have limited thermoregulatory stability, and several days after birth are required to maintain their body temperature. To consider this developmental step, we used myoblasts originating from thermolabile (five days of age) and thermostable piglets (twenty days of age). Results The efficiency of myoblast proliferation using real-time monitoring via electrical impedance was comparable at all temperatures with no difference in the cell index, slope or doubling time. Both temperatures of 37 °C and 39 °C led to similar biochemical growth properties and cell viability. Only differences in the mRNA expression of myogenesis-associated genes were found at 39 °C compared to 37 °C with less MYF5, MYOD and MSTN and more MYH3 mRNA. Myoblasts grown at 35 °C are smaller, exhibit higher DNA synthesis and express higher amounts of the satellite cell marker PAX7, muscle growth inhibitor MSTN and metabolic coactivator PPARGC1A. Only permanent cultivation at 41 °C resulted in higher HSP expression at the mRNA and protein levels. Interactions between the temperature and donor age showed that MYOD, MYOG, MYH3 and SMPX mRNAs were temperature-dependently expressed in myoblasts of thermolabile but not thermostable piglets. Conclusions We conclude that 37 °C to 39 °C is the best physiological temperature range for adequate porcine myoblast development. Corresponding to the body temperatures of piglets, it is therefore possible to culture primary muscle cells at 39 °C. Only the highest temperature of 41 °C acts as a thermal stressor for myoblasts with increased HSP expression, but it also accelerates myogenic development. Cultivation at 35 °C, however, leads to less differentiated myoblasts with distinct thermogenetic activity. The adaptive behavior of derived primary muscle cells to different cultivation temperatures seems to be determined by the thermoregulatory stability of the donor piglets.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


2002 ◽  
Vol 13 (12) ◽  
pp. 4243-4255 ◽  
Author(s):  
Julie E. Legakis ◽  
Jay I. Koepke ◽  
Chris Jedeszko ◽  
Ferdous Barlaskar ◽  
Laura J. Terlecky ◽  
...  

The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ting Zhao ◽  
Shengfan Ye ◽  
Zimu Tang ◽  
Liwei Guo ◽  
Zhipeng Ma ◽  
...  

AbstractReactive oxygen species (ROS) stress has been demonstrated as potentially critical for induction and maintenance of cellular senescence, and been considered as a contributing factor in aging and in various neurological disorders including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). In response to low-level ROS stress, the expression of Δ133p53, a human p53 isoform, is upregulated to promote cell survival and protect cells from senescence by enhancing the expression of antioxidant genes. In normal conditions, the basal expression of Δ133p53 prevents human fibroblasts, T lymphocytes, and astrocytes from replicative senescence. It has been also found that brain tissues from AD and ALS patients showed decreased Δ133p53 expression. However, it is uncharacterized if Δ133p53 plays a role in brain aging. Here, we report that zebrafish Δ113p53, an ortholog of human Δ133p53, mainly expressed in some of the radial glial cells along the telencephalon ventricular zone in a full-length p53-dependent manner. EDU-labeling and cell lineage tracing showed that Δ113p53-positive cells underwent cell proliferation to contribute to the neuron renewal process. Importantly, Δ113p53M/M mutant telencephalon possessed less proliferation cells and more senescent cells compared to wild-type (WT) zebrafish telencephalon since 9-months old, which was associated with decreased antioxidant genes expression and increased level of ROS in the mutant telencephalon. More interestingly, unlike the mutant fish at 5-months old with cognition ability, Δ113p53M/M zebrafish, but not WT zebrafish, lost their learning and memory ability at 19-months old. The results demonstrate that Δ113p53 protects the brain from aging by its antioxidant function. Our finding provides evidence at the organism level to show that depletion of Δ113p53/Δ133p53 may result in long-term ROS stress, and finally lead to age-related diseases, such as AD and ALS in humans.


Sign in / Sign up

Export Citation Format

Share Document