scholarly journals Effect of Zinc Supplementation on the Serum Metabolites Profile at the Early Stage of Breast Cancer in Rats

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3457
Author(s):  
Barbara Bobrowska-Korczak ◽  
Paulina Gątarek ◽  
Dorota Skrajnowska ◽  
Wojciech Bielecki ◽  
Rafal Wyrebiak ◽  
...  

The cytotoxic properties of zinc nanoparticles have been evaluated in vitro against several types of cancer. However, there is a lack of significant evidence of their activity in vivo, and a potential therapeutic application remains limited. Herein we report the effective inhibition of tumor growth by zinc nanoparticles in vivo, as the effect of the dietary intervention, after the chemical induction in a rodent model of breast cancer. Biopsy images indicated grade 1 tumors with multiple inflammatory infiltrates in the group treated with zinc nanoparticles, whereas, in the other groups, a moderately differentiated grade 2 adenocarcinoma was identified. Moreover, after the supplementation with zinc nanoparticles, the levels of several metabolites associated with cancer metabolism, important to its survival, were found to have been altered. We also revealed that the biological activity of zinc in vivo depends on the size of applied particles, as the treatment with zinc microparticles has not had much effect on cancer progression.

Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ya Fan ◽  
Jia Wang ◽  
Wen Jin ◽  
Yifei Sun ◽  
Yuemei Xu ◽  
...  

Abstract Background E3 ubiquitin ligase HRD1 (HMG-CoA reductase degradation protein 1, alias synoviolin with SYVN1 as the official gene symbol) was found downregulated and acting as a tumor suppressor in breast cancer, while the exact expression profile of HRD1 in different breast cancer subtypes remains unknown. Recent studies characterized circular RNAs (circRNAs) playing an regulatory role as miRNA sponge in tumor progression, presenting a new viewpoint for the post-transcriptional regulation of cancer-related genes. Methods Examination of the expression of HRD1 protein and mRNA was implemented using public microarray/RNA-sequencing datasets and breast cancer tissues/cell lines. Based on public RNA-sequencing results, online databases and enrichment/clustering analyses were used to predict the specific combinations of circRNA/miRNA that potentially govern HRD1 expression. Gain-of-function and rescue experiments in vitro and in vivo were executed to evaluate the suppressive effects of circNR3C2 on breast cancer progression through HRD1-mediated proteasomal degradation of Vimentin, which was identified using immunoblotting, immunoprecipitation, and in vitro ubiquitination assays. Results HRD1 is significantly underexpressed in triple-negative breast cancer (TNBC) against other subtypes and has an inverse correlation with Vimentin, inhibiting the proliferation, migration, invasion and EMT (epithelial-mesenchymal transition) process of breast cancer cells via inducing polyubiquitination-mediated proteasomal degradation of Vimentin. CircNR3C2 (hsa_circ_0071127) is also remarkably downregulated in TNBC, negatively correlated with the distant metastasis and lethality of invasive breast carcinoma. Overexpressing circNR3C2 in vitro and in vivo leads to a crucial enhancement of the tumor-suppressive effects of HRD1 through sponging miR-513a-3p. Conclusions Collectively, we elucidated a bona fide circNR3C2/miR-513a-3p/HRD1/Vimentin axis that negatively regulates the metastasis of TNBC, suggesting that circNR3C2 and HRD1 can act as potential prognostic biomarkers. Our study may facilitate the development of therapeutic agents targeting circNR3C2 and HRD1 for patients with aggressive breast cancer.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 248 ◽  
Author(s):  
Aurore Claude-Taupin ◽  
Leïla Fonderflick ◽  
Thierry Gauthier ◽  
Laura Mansi ◽  
Jean-René Pallandre ◽  
...  

Early detection and targeted treatments have led to a significant decrease in mortality linked to breast cancer (BC), however, important issues need to be addressed in the future. One of them will be to find new triple negative breast cancer (TNBC) therapeutic strategies, since none are currently efficiently targeting this subtype of BC. Since numerous studies have reported the possibility of targeting the autophagy pathway to treat or limit cancer progression, we analyzed the expression of six autophagy genes (ATG9A, ATG9B, BECLIN1, LC3B, NIX and P62/SQSTM1) in breast cancer tissue, and compared their expression with healthy adjacent tissue. In our study, we observed an increase in ATG9A mRNA expression in TNBC samples from our breast cancer cohort. We also showed that this increase of the transcript was confirmed at the protein level on paraffin-embedded tissues. To corroborate these in vivo data, we designed shRNA- and CRISPR/Cas9-driven inhibition of ATG9A expression in the triple negative breast cancer cell line MDA-MB-436, in order to determine its role in the regulation of cancer phenotypes. We found that ATG9A inhibition led to an inhibition of in vitro cancer features, suggesting that ATG9A can be considered as a new marker of TNBC and might be considered in the future as a target to develop new specific TNBC therapies.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 625 ◽  
Author(s):  
Yi-Fen Chiang ◽  
Hsin-Yuan Chen ◽  
Ko-Chieh Huang ◽  
Po-Han Lin ◽  
Shih-Min Hsia

Excessive growth of cancer cells is the main cause of cancer mortality. Therefore, discovering how to inhibit cancer growth is an important research topic. Recently, the newly discovered adipokine, known as nicotinamide phosphoribosyl transferase (NAMPT, visfatin), which has been associated with metabolic syndrome and obesity, has also been found to be a major cause of cancer proliferation. Therefore, inhibition of NAMPT and reduction of Nicotinamide adenine dinucleotide (NAD) synthesis is one strategy for cancer therapy. Cinnamaldehyde (CA), as an antioxidant and anticancer natural compound, may have the ability to inhibit visfatin. The breast cancer cell line and xenograft animal models were treated under different dosages of visfatin combined with CA and FK866 (a visfatin inhibitor) to test for cell toxicity, as well as inhibition of tumor-related proliferation of protein expression. In the breast cancer cell and the xenograft animal model, visfatin significantly increased proliferation-related protein expression, but combination with CA or FK866 significantly reduced visfatin-induced carcinogenic effects. For the first time, a natural compound inhibiting extracellular and intracellular NAMPT has been demonstrated. We hope that, in the future, this can be used as a potential anticancer compound and provide further directions for research.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1918
Author(s):  
Yanyuan Wu ◽  
Marianna Sarkissyan ◽  
Ochanya Ogah ◽  
Juri Kim ◽  
Jaydutt V. Vadgama

Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is associated with cancer progression. Our study examined the role of MALAT1 in breast cancer and the mechanisms involved in the regulation of MALAT1. Methods: In vitro cell and in vivo animal models were used to examine the role of MALAT1 in breast cancer. The interaction of FOXO1 (Forkhead Box O1) at the promoter region of MALAT1 was investigated by chromatin immunoprecipitation (ChIP) assay. Results: The data shows an elevated expression of MALAT1 in breast cancer tissues and cells compared to non-cancer tissues and cells. The highest level of MALAT1 was observed in metastatic triple-negative breast cancer and trastuzumab-resistant HER2 (human epidermal growth factor receptor 2) overexpressing (HER2+) cells. Knockdown of MALAT1 in trastuzumab-resistant HER2+ cells reversed epithelial to mesenchymal transition-like phenotype and cell invasiveness. It improved the sensitivity of the cell’s response to trastuzumab. Furthermore, activation of Akt by phosphorylation was associated with the upregulation of MALAT1. The transcription factor FOXO1 regulates the expression of MALAT1 via the PI3/Akt pathway. Conclusions: We show that MALAT1 contributes to HER2+ cell resistance to trastuzumab. Targeting the PI3/Akt pathway and stabilizing FOXO1 translocation could inhibit the upregulation of MALAT1.


2019 ◽  
Vol 164 ◽  
pp. 326-335 ◽  
Author(s):  
Jayant Dewangan ◽  
Sonal Srivastava ◽  
Sakshi Mishra ◽  
Aman Divakar ◽  
Sadan Kumar ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Domenica Rea ◽  
Giuseppe Palma ◽  
Antonio Luciano ◽  
...  

Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Severalin vitroandin vivostudies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performedin vitrostudies on ER-negative human breast carcinoma cells, MDA.MB231 andin vivostudies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphinein vitroenhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells.In vivostudies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.


2014 ◽  
Vol 44 (6) ◽  
pp. 1933-1944 ◽  
Author(s):  
M.W. ROOMI ◽  
T. KALINOVSKY ◽  
N.M. ROOMI ◽  
J. CHA ◽  
M. RATH ◽  
...  

2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Cui-Cui Zhao ◽  
Jing Chen ◽  
Li-Ying Zhang ◽  
Hong Liu ◽  
Chuan-Gui Zhang ◽  
...  

Abstract Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jonathas Xavier Pereira ◽  
Sofia Nascimento dos Santos ◽  
Thaís Canuto Pereira ◽  
Mariana Cabanel ◽  
Roger Chammas ◽  
...  

Galectin-3 (Gal-3) is a multifunctional β-galactoside-binding lectin that once synthesized is expressed in the nucleus, cytoplasm, cell surface, and extracellular environment. Gal-3 plays an important role in breast cancer tumors due to its ability to promote interactions between cell-cell and cell-extracellular matrix (ECM) elements, increasing tumor survival and metastatic dissemination. Still, the mechanism by which Gal-3 interferes with tumor cell migration and metastasis formation is complex and not fully understood. Here, we showed that Gal-3 knockdown increased the migration ability of 4T1 murine breast cancer cells in vitro. Using the 4T1 orthotopic breast cancer spontaneous metastasis mouse model, we demonstrated that 4T1-derived tumors were significantly larger in the presence of Gal-3 (scramble) in comparison with Gal-3 knockdown 4T1-derived tumors. Nevertheless, Gal-3 knockdown 4T1 cells were outnumbered in the bone marrow in comparison with scramble 4T1 cells. Finally, we reported here a decrease in the content of cell-surface syndecan-1 and an increase in the levels of chondroitin sulfate proteoglycans such as versican in Gal-3 knockdown 4T1 cells both in vitro and in vivo. Overall, our findings establish that Gal-3 downregulation during breast cancer progression regulates cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycans (PG), thus enhancing the metastatic potential of tumor cells.


Sign in / Sign up

Export Citation Format

Share Document