scholarly journals Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Maria Stefania Spagnuolo ◽  
Susanna Iossa ◽  
Luisa Cigliano

Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.

2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Healthy lifestyle and diet are associated with significant reduction in risk of obesity, type 2 diabetes, and cardiovascular diseases. Oxidative stress and the imbalance between prooxidants and antioxidants are linked to cardiovascular and metabolic diseases. Changes in antioxidant capacity of the body may lead to oxidative stress and vascular dysfunction. Diet is an important source of antioxidants, while exercise offers many health benefits as well. Recent findings have evidenced that diet and physical factors are correlated to oxidative stress. Diet and physical factors have debatable roles in modulating oxidative stress and effects on the endothelium. Since endothelium and oxidative stress play critical roles in cardiovascular and metabolic diseases, dietary and physical factors could have significant implications on prevention of the diseases. This review is aimed at summarizing the current knowledge on the impact of diet manipulation and physical factors on endothelium and oxidative stress, focusing on cardiovascular and metabolic diseases. We discuss the friend-and-foe role of dietary modification (including different diet styles, calorie restriction, and nutrient supplementation) on endothelium and oxidative stress, as well as the potential benefits and concerns of physical activity and exercise on endothelium and oxidative stress. A fine balance between oxidative stress and antioxidants is important for normal functions in the cells and interfering with this balance may lead to unfavorable effects. Further studies are needed to identify the best diet composition and exercise intensity.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 346 ◽  
Author(s):  
Justyna Godos ◽  
Walter Currenti ◽  
Donato Angelino ◽  
Pedro Mena ◽  
Sabrina Castellano ◽  
...  

Over the last decades, there has been a substantial increase in the prevalence of mental health disorders, including an increased prevalence of depression, anxiety, cognitive, and sleep disorders. Diet and its bioactive components have been recognized among the modifiable risk factors, possibly influencing their pathogenesis. This review aimed to summarize molecular mechanisms underlying the putative beneficial effects toward brain health of different dietary factors, such as micro- and macronutrient intake and habits, such as feeding time and circadian rhythm. The role of hormonal homeostasis in the context of glucose metabolism and adiponectin regulation and its impact on systemic and neuro-inflammation has also been considered and deepened. In addition, the effect of individual bioactive molecules exerting antioxidant activities and acting as anti-inflammatory agents, such as omega-3 fatty acids and polyphenols, considered beneficial for the central nervous system via modulation of adult neurogenesis, synaptic and neuronal plasticity, and microglia activation has been summarized. An overview of the regulation of the gut–brain axis and its effect on the modulation of systemic inflammation and oxidative stress has been provided. Finally, the impact of bioactive molecules on inflammation and oxidative stress and its association with brain health has been summarized.


2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


2017 ◽  
Vol 117 (2) ◽  
pp. 218-229 ◽  
Author(s):  
K. Gil-Cardoso ◽  
I. Ginés ◽  
M. Pinent ◽  
A. Ardévol ◽  
X. Terra ◽  
...  

AbstractThe gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.


2019 ◽  
Vol 5 (3) ◽  
pp. 145-150
Author(s):  
Subathra Thiruchengodu Ammaiyappan ◽  
Gopal Krushna Pal ◽  
Dhanalakshmi Yerrabelli ◽  
Pravati Pal ◽  
Nivedita Nanda

Author(s):  
Carmela Balistreri ◽  
Calogera Pisano ◽  
Giovanni Ruvolo

Ascending aorta aneurysm (AsAA) is a complex disease, currently defined an inflammatory disease. In the sporadic form, AsAA has, indeed, a complex physiopathology with a strong inflammatory basis, significantly modulated by genetic variants in innate/inflammatory genes, acting as independent risk factors and as largely evidenced in our recent studies performed during the last 10 years. Based on these premises, here, we want to revise the impact of reactive oxygen species (ROS) and oxidative stress on AsAA pathophysiology and consequently on the onset and progression of sporadic AsAA. This might consent to add other important pieces in the intricate puzzle of the pathophysiology of this disease with the translational aim to identify biomarkers and targets to apply in the complex management of AsAA, by facilitating the AsAA diagnosis currently based only on imaging evaluations, and the treatment exclusively founded on surgery approaches.


2021 ◽  
Vol 27 (2) ◽  
pp. 133-145
Author(s):  
E. N. Dudinskaya ◽  
L. V. Matchekhina ◽  
K. A. Eruslanova ◽  
O. A. Dogotar ◽  
L. P. Ryltseva ◽  
...  

The review summarizes the data of past two decades on the effect of hypertension on vascular aging and considers the effect of chronic inflammation and oxidative stress patterns on the remodeling of cardiovascular system. Clinical studies on the effect of various classes of antihypertensive drugs on age-associated parameters of vascular aging are discussed. These include endothelial dysfunction and arterial assessed by endothelium-dependent vasodilation, pulse wave velocity, augmentation index, cardiovascular index, thickness of the intima-media complex, and so on.


Sign in / Sign up

Export Citation Format

Share Document