scholarly journals Cardiometabolic Associations between Physical Activity, Adiposity, and Lipoprotein Subclasses in Prepubertal Norwegian Children

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2095
Author(s):  
Tarja Rajalahti ◽  
Eivind Aadland ◽  
Geir Kåre Resaland ◽  
Sigmund Alfred Anderssen ◽  
Olav Martin Kvalheim

Lipoprotein subclasses possess crucial cardiometabolic information. Due to strong multicollinearity among variables, little is known about the strength of influence of physical activity (PA) and adiposity upon this cardiometabolic pattern. Using a novel approach to adjust for covariates, we aimed at determining the “net” patterns and strength for PA and adiposity to the lipoprotein profile. Principal component and multivariate pattern analysis were used for the analysis of 841 prepubertal children characterized by 26 lipoprotein features determined by proton nuclear magnetic resonance spectroscopy, a high-resolution PA descriptor derived from accelerometry, and three adiposity measures: body mass index, waist circumference to height, and skinfold thickness. Our approach focuses on revealing and validating the underlying predictive association patterns in the metabolic, anthropologic, and PA data to acknowledge the inherent multicollinear nature of such data. PA associates to a favorable cardiometabolic pattern of increased high-density lipoproteins (HDL), very large and large HDL particles, and large size of HDL particles, and decreasedtriglyceride, chylomicrons, very low-density lipoproteins (VLDL), and their subclasses, and to low size of VLDL particles. Although weakened in strength, this pattern resists adjustment for adiposity. Adiposity is inversely associated to this pattern and exhibits unfavorable associations to low-density lipoprotein (LDL) features, including atherogenic small and very small LDL particles. The observed associations are still strong after adjustment for PA. Thus, lipoproteins explain 26.0% in adiposity after adjustment for PA compared to 2.3% in PA after adjustment for adiposity.

Author(s):  
Franziska Grundler ◽  
Dietmar Plonné ◽  
Robin Mesnage ◽  
Diethard Müller ◽  
Cesare R. Sirtori ◽  
...  

Abstract Purpose Dyslipidemia is a major health concern associated with an increased risk of cardiovascular mortality. Long-term fasting (LF) has been shown to improve plasma lipid profile. We performed an in-depth investigation of lipoprotein composition. Methods This observational study included 40 volunteers (50% men, aged 32–65 years), who underwent a medically supervised fast of 14 days (250 kcal/day). Changes in lipid and lipoprotein levels, as well as in lipoprotein subclasses and particles, were measured by ultracentrifugation and nuclear magnetic resonance (NMR) at baseline, and after 7 and 14 fasting days. Results The largest changes were found after 14 fasting days. There were significant reductions in triglycerides (TG, − 0.35 ± 0.1 mmol/L), very low-density lipoprotein (VLDL)-TG (− 0.46 ± 0.08 mmol/L), VLDL-cholesterol (VLDL-C, − 0.16 ± 0.03 mmol/L) and low-density lipoprotein (LDL)-C (− 0.72 ± 0.14 mmol/L). Analysis of LDL subclasses showed a significant decrease in LDL1-C (− 0.16 ± 0.05 mmol/L), LDL2-C (− 0.30 ± 0.06 mmol/L) and LDL3-C (− 0.27 ± 0.05 mmol/L). NMR spectroscopy showed a significant reduction in large VLDL particles (− 5.18 ± 1.26 nmol/L), as well as large (− 244.13 ± 39.45 nmol/L) and small LDL particles (− 38.45 ± 44.04 nmol/L). A significant decrease in high-density lipoprotein (HDL)-C (− 0.16 ± 0.04 mmol/L) was observed. By contrast, the concentration in large HDL particles was significantly raised. Apolipoprotein A1 decreased significantly whereas apolipoprotein B, lipoprotein(a), fibrinogen and high-sensitivity C-reactive protein were unchanged. Conclusion Our results suggest that LF improves lipoprotein levels and lipoprotein subclasses and ameliorates the lipoprotein-associated atherogenic risk profile, suggesting a reduction in the cardiovascular risk linked to dyslipidemia. Trial Registration Study registration number: DRKS-ID: DRKS00010111 Date of registration: 03/06/2016 “retrospectively registered”.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Damon L Swift ◽  
Mark A Sarzynski ◽  
Joshua McGee ◽  
Savanna Barefoot ◽  
Patricia M Brophy ◽  
...  

Introduction: Previous studies have shown that lipoprotein particle size and lipoprotein subclasses are associated with cardiovascular and type 2 diabetes risk, and have independent prognostic value above traditional lipid concentrations. The impact of exercise training and increasing non-exercise physical activity on lipoprotein subclasses and size has not been previously investigated. Methods: In this pilot study, 35 obese adults were randomized to aerobic exercise training (50-75% of VO 2 max) (AERO, n=11), aerobic training and increasing non-exercise physical activity (AERO-PA, n=10, ~3,000 steps above baseline levels), or a non-exercise control group (n=14) for 6 months. Baseline and follow-up blood samples were analyzed for lipoprotein subclass, size, and lipoprotein insulin resistance score (LP-IR) using nuclear magnetic resonance spectroscopy (Liposcience, NC). Analysis of covariance was used to evaluate the change in outcome variables following the intervention across groups with adjustment for baseline value and age. Participants who changed lipid medications during the intervention (n=2) or who were non-adherent to exercise training (n=2) were excluded from the analysis. Results: Significant reductions were observed for mean VLDL size in the AERO-PA group (-4.7 nm, CI: -8.7 to -0.8) compared to control group (0.7 nm, CI: -2.7 to 4.4) and the AERO group (1.1 nm, CI: -2.9 to 5.0). Reductions in triglyceride concentrations were observed in the AERO-PA group (-28.3 mg/dL, CI: -50.3 to -6.4) compared to control (4.1 mg/dL, CI: -14.6 to 22.8). Additionally, we observed a trend for LP-IR index (p=0.055) and the concentration of small HDL particles (p=0.093) to decrease in the AERO-PA group compared to controls, with no differences compared to the AERO group (p>0.10). No significant changes were observed for other notable lipoprotein measures, such as LDL size, HDL size, concentration of small LDL particles, or chylomicron measures (p>0.05). In the AERO-PA group, the change in steps was associated with the change in LP-IR index (r= -0.71, p=0.013), but not with change in VLDL size (r= -0.24, p=0.463) or triglyceride concentrations (r=-0.28, p=0.388). Conclusions: Aerobic training combined with increasing non-exercise physical activity leads to favorable changes in the lipoprotein profile, specifically reductions in VLDL size and triglycerides, and may have promise for other lipoprotein traits (reductions in LP-IR and small HDL particles) that were not observed with aerobic training alone.


1980 ◽  
Vol 26 (9) ◽  
pp. 1275-1277 ◽  
Author(s):  
Y Yamaguchi

Abstract I describe a method for measuring high-density lipoprotein phospholipids. Magnesium chloride and dextran sulfate are used to precipitate all low-density and very-low-density lipoproteins. The supernate contains only high-density lipoproteins, the phospholipid concentration of which is determined by an enzymic method. The precision of the method (CV) is 2.35% (10 repeated assays), and the mean value for HDL-phospholipids was 1006 (SD 248) mg/L for 30 apparently healthy subjects. I used electrophoresis and enzymic color development to confirm the presence of HDL-phospholipids. Results are compared with those obtained by an ultracentrifugation method.


2015 ◽  
Vol 128 (12) ◽  
pp. 877-882 ◽  
Author(s):  
Montse Guardiola ◽  
Núria Plana ◽  
Daiana Ibarretxe ◽  
Anna Cabré ◽  
Marta González ◽  
...  

The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene regulates cholesterol homoeostasis by accelerating low-density lipoprotein receptor (LDLR) degradation resulting in the decreased catabolism of low-density lipoprotein (LDL) leading to hypercholesterolaemia. PCSK9 has also been related to other metabolic risk factors such as triglycerides (TGs) and glucose levels and body mass index (BMI). Therefore, our aim was to study the relationship between the PCSK9 and the lipid and lipoprotein profile. We studied 267 diabetic and metabolic syndrome patients who were not receiving any lipid-lowering therapy. We measured circulating lipids, cholesterol in remnant lipoproteins (RLPc) and PCSK9 levels. A detailed lipoprotein profile was determined based on NMR. Plasma PCSK9 levels were significantly and positively correlated with TG (r=0.136, P=0.033), total cholesterol (r=0.219, P<0.001) and apoB (apolipoprotein B; r=0.226, P=0.006) circulating levels and with an atherogenic profile of lipoprotein subclasses. In further detail, circulating PCSK9 levels were positively correlated with large very-low density lipoprotein (VLDL) particles, (r=0.210, P=0.001) and with their remnants, the intermediate-density lipoprotein (IDL) particles (r=0.206, P=0.001); positively correlated with smaller LDL particles (for small LDL: r=0.224, P<0.001; for medium small LDL: r=0.235, P<0.001; and for very small LDL: r=0.220, P<0.001); and with high-density lipoprotein (HDL) particles (r=0.146, P<0.001), which is mainly explained by the PCSK9 correlation with the smallest HDL particles (r=0.130, P=0.037). In addition, circulating PCSK9 levels were positively correlated with the pro-atherogenic circulating RLPc levels (r=0.171, P=0.006). All of the correlations were adjusted by age, gender and BMI. PCSK9 levels are significantly and positively correlated with atherogenic lipoproteins such as large VLDL, IDL, the smallest LDL, the smallest HDL particles and RLPc levels.


1978 ◽  
Vol 176 (1) ◽  
pp. 169-174 ◽  
Author(s):  
P Thomopoulos ◽  
M Berthelier ◽  
D Lagrange ◽  
M J Chapman ◽  
M H Laudat

The effect of human plasma lipoproteins on lipogenesis from glucose has been studied in isolated rat adipocytes. The very-low-density lipoproteins increased lipogenesis specifically, whereas low-density lipoproteins and high-density lipoproteins were without effect. Such stimulation could be reproduced with partially delipidated very-low-density lipoproteins. Nod-esterified fatty acids and glycerol were also without effect. Pretreatment of the adipocytes with trypsin did not alter the effect of very-low-density lipoprotein. The presence of Ca2+ was required for the full activation of lipogenesis. The synthesis of acylglycerol fatty acids and of acylglycerol glycerol were equally increased. The effect of very-low-density lipoprotein was not additive to that of insulin. It is suggested that very-low-density lipoprotein may directly stimulate lipogenesis in fat-cells, particularly in states when the lipoproteins are present at high concentration in the circulation.


1990 ◽  
Vol 36 (12) ◽  
pp. 2109-2113 ◽  
Author(s):  
R Siekmeier ◽  
W März ◽  
W Gross

Abstract Recently, polyanion precipitation assays for low-density lipoprotein (LDL)-cholesterol have been found to underestimate their analyte in normolipidemic samples (Siekmeier et al., Clin Chim Acta 1988;177:221-30). Therefore, accuracy, specificity, and interference by nonesterified fatty acids have been studied for three precipitants (obtained by heparin, dextran sulfate, or polyvinyl sulfate precipitation). At normal concentrations of LDL, precipitation is incomplete, whereas it is nearly quantitative at high concentrations of LDL. The polyvinyl sulfate reagent markedly responds to variations in the amount of non-LDL protein present in the precipitation mixture. In the dextran sulfate and the polyvinyl sulfate method, but not in the heparin method, the percentages of LDL precipitated notably increase as the concentration of the polyanion compound is decreased. In either assay, very-low-density lipoproteins, but not high-density lipoproteins, are significantly coprecipitated (dextran sulfate 28%, polyvinyl sulfate and heparin 66%) in a concentration-independent fashion. Increased concentrations of nonesterified fatty acids markedly interfere with the dextran sulfate and polyvinyl sulfate assay, but do not much affect results with the heparin reagent.


2005 ◽  
Vol 00 (01) ◽  
pp. 31
Author(s):  
Michael Miller

Elevated triglycerides are now considered an independent risk factor for coronary heart disease (CHD), even apart from elevated low-density lipoprotein (LDL) cholesterol. While the primary lipid target for CHD risk management remains LDL cholesterol, the treatment of elevated triglycerides is now also recommended. Elevated triglycerides are believed to increase cardiovascular risk because certain triglyceride-rich lipoproteins, called remnant lipoproteins (partially degraded chylomicrons and very-low density lipoproteins (VLDL)), are atherogenic. Hypertri-glyceridemia, together with low levels of high-density lipoprotein (HDL) cholesterol and an increased prevalence of small, dense LDL particles, comprise a triad of lipid risk factors known as atherogenic dyslipidemia.The significance of hypertriglyceridemia as a cardiovascular risk factor is further highlighted by its inclusion as a component of the metabolic syndrome, a cluster of metabolic abnormalities, related to insulin resistance. The other criteria for metabolic syndrome include low HDL cholesterol, central obesity, elevated blood pressure, and abnormal fasting glucose. The metabolic syndrome is recognized as a major risk factor not only for premature CHD but also for type 2 diabetes mellitus.


1997 ◽  
Vol 322 (3) ◽  
pp. 765-769 ◽  
Author(s):  
Fabio TANFANI ◽  
Tiziana GALEAZZI ◽  
Giovanna CURATOLA ◽  
Enrico BERTOLI ◽  
Gianna FERRETTI

The secondary structure of apolipoprotein B-100 in low-density lipoprotein (LDL) subfractions was analysed by Fourier-transform IR spectroscopy. LDLs were isolated in three density ranges by gradient centrifugation of human plasma from healthy volunteers. The spectra revealed differences in the lipid content and composition of the three LDL fractions. The secondary structure of apolipoprotein B-100 was the same in the two fractions corresponding to the large less-dense LDL particles, whereas a lower content of β-strands was found in the third fraction corresponding to the smaller denser LDL particles. Analysis of the spectroscopic data suggests that, in the same set of LDL subfractions, the particle size is probably the cause of the observed differences in apolipoprotein B-100 secondary structure.


Sign in / Sign up

Export Citation Format

Share Document