scholarly journals Glow on Sharks: State of the Art on Bioluminescence Research

Oceans ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 822-842
Author(s):  
Laurent Duchatelet ◽  
Julien M. Claes ◽  
Jérôme Delroisse ◽  
Patrick Flammang ◽  
Jérôme Mallefet

This review presents a synthesis of shark bioluminescence knowledge. Up to date, bioluminescent sharks are found only in Squaliformes, and specifically in Etmopteridae, Dalatiidae and Somniosidae families. The state-of-the-art knowledge about the evolution, ecological functions, histological structure, the associated squamation and physiological control of the photogenic organs of these elusive deep-sea sharks is presented. Special focus is given to their unique and singular hormonal luminescence control mechanism. In this context, the implication of the photophore-associated extraocular photoreception—which complements the visual adaptations of bioluminescent sharks to perceive residual downwelling light and luminescence in dim light environment—in the hormonally based luminescence control is depicted in detail. Similarities and differences between shark families are highlighted and support the hypothesis of an evolutionary unique ancestral appearance of luminescence in elasmobranchs. Finally, potential areas for future research on shark luminescence are presented.

Author(s):  
Muhammad Yousaf ◽  
Petr Bris

A systematic literature review (SLR) from 1991 to 2019 is carried out about EFQM (European Foundation for Quality Management) excellence model in this paper. The aim of the paper is to present state of the art in quantitative research on the EFQM excellence model that will guide future research lines in this field. The articles were searched with the help of six strings and these six strings were executed in three popular databases i.e. Scopus, Web of Science, and Science Direct. Around 584 peer-reviewed articles examined, which are directly linked with the subject of quantitative research on the EFQM excellence model. About 108 papers were chosen finally, then the purpose, data collection, conclusion, contributions, and type of quantitative of the selected papers are discussed and analyzed briefly in this study. Thus, this study identifies the focus areas of the researchers and knowledge gaps in empirical quantitative literature on the EFQM excellence model. This article also presents the lines of future research.


2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.


2021 ◽  
Vol 54 (7) ◽  
pp. 1-39
Author(s):  
Ankur Lohachab ◽  
Saurabh Garg ◽  
Byeong Kang ◽  
Muhammad Bilal Amin ◽  
Junmin Lee ◽  
...  

Unprecedented attention towards blockchain technology is serving as a game-changer in fostering the development of blockchain-enabled distinctive frameworks. However, fragmentation unleashed by its underlying concepts hinders different stakeholders from effectively utilizing blockchain-supported services, resulting in the obstruction of its wide-scale adoption. To explore synergies among the isolated frameworks requires comprehensively studying inter-blockchain communication approaches. These approaches broadly come under the umbrella of Blockchain Interoperability (BI) notion, as it can facilitate a novel paradigm of an integrated blockchain ecosystem that connects state-of-the-art disparate blockchains. Currently, there is a lack of studies that comprehensively review BI, which works as a stumbling block in its development. Therefore, this article aims to articulate potential of BI by reviewing it from diverse perspectives. Beginning with a glance of blockchain architecture fundamentals, this article discusses its associated platforms, taxonomy, and consensus mechanisms. Subsequently, it argues about BI’s requirement by exemplifying its potential opportunities and application areas. Concerning BI, an architecture seems to be a missing link. Hence, this article introduces a layered architecture for the effective development of protocols and methods for interoperable blockchains. Furthermore, this article proposes an in-depth BI research taxonomy and provides an insight into the state-of-the-art projects. Finally, it determines possible open challenges and future research in the domain.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


2019 ◽  
Vol 64 (2) ◽  
pp. 230-268
Author(s):  
Dirk Siepmann

Abstract Combining traditional methods with state-of-the-art corpus analysis, this article discusses problems associated with the translation of general academic lexis from German into English. In particular, it offers a more nuanced view on the often-made claim that there are ‘major differences’ between the two languages, many of which are said to stem from the spatial metaphorics underlying general academic German. Section 1 deals with problems that arise at the level of words and their lexico-syntactic environment, paying particular attention to spatial metaphor. Moving on to level of the paragraph, Section 2 continues the theme of spatial metaphor, showing how even quasi-terminological equivalents such as Struktur and structure exhibit subtle differences in use and may occasionally require re-metaphorization under the influence of the wider context. Section 3 provides a summary of the argument and suggests avenues for future research.


Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 149-184
Author(s):  
Francisco T. T. Cavalcante ◽  
Italo R. R. de A. Falcão ◽  
José E. da S. Souza ◽  
Thales G. Rocha ◽  
Isamayra G. de Sousa ◽  
...  

Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.


1987 ◽  
Vol 6 (1) ◽  
pp. 26-56 ◽  
Author(s):  
Robert C. Klesges ◽  
Jeffrey Cigrang ◽  
Russell E. Glasgow

Sign in / Sign up

Export Citation Format

Share Document