scholarly journals Pathogenic Delivery: The Biological Roles of Cryptococcal Extracellular Vesicles

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 754
Author(s):  
Haroldo C. de Oliveira ◽  
Rafael F. Castelli ◽  
Flavia C. G. Reis ◽  
Juliana Rizzo ◽  
Marcio L. Rodrigues

Extracellular vesicles (EVs) are produced by all domains of life. In fungi, these structures were first described in Cryptococcus neoformans and, since then, they were characterized in several pathogenic and non-pathogenic fungal species. Cryptococcal EVs participate in the export of virulence factors that directly impact the Cryptococcus–host interaction. Our knowledge of the biogenesis and pathogenic roles of Cryptococcus EVs is still limited, but recent methodological and scientific advances have improved our understanding of how cryptococcal EVs participate in both physiological and pathogenic events. In this review, we will discuss the importance of cryptococcal EVs, including early historical studies suggesting their existence in Cryptococcus, their putative mechanisms of biogenesis, methods of isolation, and possible roles in the interaction with host cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.



Author(s):  
Joni Renee White ◽  
Priscila Dauros-Singorenko ◽  
Jiwon Hong ◽  
Frédérique Vanholsbeeck ◽  
Anthony Phillips ◽  
...  

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.



2010 ◽  
Vol 78 (4) ◽  
pp. 1601-1609 ◽  
Author(s):  
Débora L. Oliveira ◽  
Célio G. Freire-de-Lima ◽  
Joshua D. Nosanchuk ◽  
Arturo Casadevall ◽  
Marcio L. Rodrigues ◽  
...  

ABSTRACT Cryptococcus neoformans and distantly related fungal species release extracellular vesicles that traverse the cell wall and contain a varied assortment of components, some of which have been associated with virulence. Previous studies have suggested that these extracellular vesicles are produced in vitro and during animal infection, but the role of vesicular secretion during the interaction of fungi with host cells remains unknown. In this report, we demonstrate by fluorescence microscopy that mammalian macrophages can incorporate extracellular vesicles produced by C. neoformans. Incubation of cryptococcal vesicles with murine macrophages resulted in increased levels of extracellular tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). Vesicle preparations also resulted in a dose-dependent stimulation of nitric oxide production by phagocytes, suggesting that vesicle components stimulate macrophages to produce antimicrobial compounds. Treated macrophages were more effective at killing C. neoformans yeast. Our results indicate that the extracellular vesicles of C. neoformans can stimulate macrophage function, apparently activating these phagocytic cells to enhance their antimicrobial activity. These results establish that cryptococcal vesicles are biologically active.



2021 ◽  
Author(s):  
Rogéria Cristina Zauli ◽  
Andrey Sladkevicius Vidal ◽  
Talita Vieira Dupin ◽  
Aline Correia Costa de Morais ◽  
Wagner Luiz Batista ◽  
...  

Leishmania spp. release extracellular vesicles (EVs) containing parasite molecules, including several antigens and virulence factors. These EVs can interact with the host cells, such as immune cells, contributing to the parasite–host relationship. Studies have demonstrated that Leishmania-EVs can promote infection in experimental models and modulate the immune response. Although the immunomodulatory effect has been demonstrated, Leishmania-EVs can deliver parasite antigens and therefore have the potential for use as a new diagnostic tool and development of new therapeutic and vaccine approaches. This review aims to bring significant advances in the field of extracellular vesicles and Leishmania, focusing on their role in the cells of the immune system.



mSphere ◽  
2021 ◽  
Author(s):  
Paul Briaud ◽  
Andrew Frey ◽  
Emily C. Marino ◽  
Raeven A. Bastock ◽  
Riley E. Zielinski ◽  
...  

Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells.



2009 ◽  
Vol 56 (2) ◽  
Author(s):  
Justyna Karkowska-Kuleta ◽  
Maria Rapala-Kozik ◽  
Andrzej Kozik

The frequency of severe systemic fungal diseases has increased in the last few decades. The clinical use of antibacterial drugs, immunosuppressive agents after organ transplantation, cancer chemotherapy, and advances in surgery are associated with increasing risk of fungal infections. Opportunistic pathogens from the genera Candida and Aspergillus as well as pathogenic fungi from the genus Cryptococcus can invade human organism and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. Nowadays, there are some effective antifungal agents, but, unfortunately, some of the pathogenic species show increasing resistance. The identification of fungal virulence factors and recognition of mechanisms of pathogenesis may lead to development of new efficient antifungal therapies. This review is focused on major virulence factors of the most common fungal pathogens of humans: Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. The adherence to host cells and tissues, secretion of hydrolytic enzymes, phenotypic switching and morphological dimorphism contribute to C. albicans virulence. The ability to grow at 37 degrees C, capsule synthesis and melanin formation are important virulence factors of C. neoformans. The putative virulence factors of A. fumigatus include production of pigments, adhesion molecules present on the cell surface and secretion of hydrolytic enzymes and toxins.



mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Lei Zhang ◽  
Keming Zhang ◽  
Hang Li ◽  
Carolina Coelho ◽  
Diego de Souza Gonçalves ◽  
...  

ABSTRACT Cryptococcus neoformans causes deadly mycosis in immunocompromised individuals. Macrophages are key cells fighting against microbes. Extracellular vesicles (EVs) are cell-to-cell communication mediators. The roles of EVs from infected host cells in the interaction with Cryptococcus remain uninvestigated. Here, EVs from viable C. neoformans-infected macrophages reduced fungal burdens but led to shorter survival of infected mice. In vitro, EVs induced naive macrophages to an inflammatory phenotype. Transcriptome analysis showed that EVs from viable C. neoformans-infected macrophages activated immune-related pathways, including p53 in naive human and murine macrophages. Conserved analysis demonstrated that basic cell biological processes, including cell cycle and division, were activated by infection-derived EVs from both murine and human infected macrophages. Combined proteomics, lipidomics, and metabolomics of EVs from infected macrophages showed regulation of pathways such as extracellular matrix (ECM) receptors and phosphatidylcholine. This form of intermacrophage communication could serve to prepare cells at more distant sites of infection to resist C. neoformans infection. IMPORTANCE Cryptococcus neoformans causes cryptococcal meningitis, which is frequent in patients with HIV/AIDS, especially in less-developed countries. The incidence of cryptococcal meningitis is close to 1 million each year globally. Macrophages are key cells that protect the body against microbes, including C. neoformans. Extracellular vesicles are a group of membrane structures that are released from cells such as macrophages that modulate cell activities via the transfer of materials such as proteins, lipids, and RNAs. In this study, we found that Cryptococcus neoformans-infected macrophages produce extracellular vesicles that enhance the inflammatory response in Cryptococcus-infected mice. These Cryptococcus neoformans-infected macrophage vesicles also showed higher fungicidal biological effects on inactivated macrophages. Using omics technology, unique protein and lipid signatures were identified in these extracellular vesicles. Transcriptome analysis showed that these vesicles activated immune-related pathways like p53 in naive macrophages. The understanding of this intermacrophage communication could provide potential targets for the design of therapeutic agents to fight this deadly mycosis.



2019 ◽  
Vol 20 (10) ◽  
pp. 1027-1036 ◽  
Author(s):  
Patricia F. Herkert ◽  
Rafaela F. Amatuzzi ◽  
Lysangela R. Alves ◽  
Marcio L. Rodrigues

Extracellular vesicles (EVs) are membranous structures surrounded by a lipid bilayer required for the export of fungal proteins, lipids, toxins, nucleic acids, pigments, and polysaccharides. Proteomic studies of the content of fungal EVs revealed the presence of molecules involved in cell metabolism, signal transduction, and virulence, among others. EVs are evolutionarily conserved in all three domains of life and play important roles in cell-cell communication. Recently, the bidirectional transport of EVs was characterized through the demonstration that EVs can be released and captured by fungal cells. In fungi, EVs participate in immunomodulation through the delivery of virulence factors, antigens and allergens, but further studies are necessary to investigate their potential roles as carriers of diagnostic biomarkers and in drug delivery or antifungal resistance transmission. In this review, we discuss the roles of fungal EVs and their cargo in cell-cell communication, host-pathogen interactions, and environmental perception. The functions of EVs as vehicles for transporting fungal proteins and virulence factors are also addressed, as well as their use as biomarkers for the diagnosis of diseases and possible participation in antifungal responses.



mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Alexandre Alanio ◽  
Marie Desnos-Ollivier ◽  
Françoise Dromer

ABSTRACTCryptococcosis is a multifaceted fungal infection with variable clinical presentation and outcome. As in many infectious diseases, this variability is commonly assigned to host factors. To investigate whether the diversity ofCryptococcus neoformansclinical (ClinCn) isolates influences the interaction with host cells and the clinical outcome, we developed and validated new quantitative assays using flow cytometry and J774 macrophages. The phenotype of ClinCn-macrophage interactions was determined for 54 ClinCn isolates recovered from cerebrospinal fluids (CSF) from 54 unrelated patients, based on phagocytic index (PI) and 2-h and 48-h intracellular proliferation indexes (IPH2 and IPH48, respectively). Their phenotypes were highly variable. Isolates harboring low PI/low IPH2 and high PI/high IPH2 values were associated with nonsterilization of CSF at week 2 and death at month 3, respectively. A subset of 9 ClinCn isolates with different phenotypes exhibited variable virulence in mice and displayed intramacrophagic expression levels of theLAC1,APP1,VAD1,IPC1,PLB1, andCOX1genes that were highly variable among the isolates and correlated with IPH48. Variation in the expression of virulence factors is thus shown here to depend on not only experimental conditions but also fungal background. These results suggest that, in addition to host factors, the patient’s outcome can be related to fungal determinants. Deciphering the molecular events involved inC. neoformansfate inside host cells is crucial for our understanding of cryptococcosis pathogenesis.IMPORTANCECryptococcus neoformansis a life-threatening human fungal pathogen that is responsible for an estimated 1 million cases of meningitis/year, predominantly in HIV-infected patients. The diversity of infecting isolates is well established, as is the importance of the host factors. Interaction with macrophages is a major step in cryptococcosis pathogenesis. How the diversity of clinical isolates influences macrophages’ interactions and impacts cryptococcosis outcome in humans remains to be elucidated. Using new assays, we uncovered how yeast-macrophage interactions were highly variable among clinical isolates and found an association between specific behaviors and cryptococcosis outcome. In addition, gene expression of some virulence factors and intracellular proliferation were correlated. While many studies have established that virulence factors can be differentially expressed as a function of experimental conditions, our study demonstrates that, under the same experimental conditions, clinical isolates behaved differently, a diversity that could participate in the variable outcome of infection in humans.



2021 ◽  
Author(s):  
Brenda Silva Rosa da Luz ◽  
Vasco Azevedo ◽  
Yves Le-loir ◽  
Eric Guedon

Staphylococcus aureus is a pathogen of great importance to clinical and veterinary medicine. Recently, there has been a growing interest in S. aureus extracellular vesicles (EVs) in the pathogenesis of this bacterium. Released by living cells into the extracellular milieu, EVs are membranous structures carrying macromolecules such as proteins, nucleic acids, and metabolites. These structures play several physiological roles and are, among others, considered a mechanism of intercellular communication within S. aureus populations but also in trans kingdom interactions. S. aureus EVs were shown to transport important bacterial survival and virulence factors, such as β-lactamases, toxins, and proteins associated with bacterial adherence to host cells, and to trigger the production of cytokines and promote tissue inflammation. In this chapter, we will review the main studies regarding S. aureus EVs, including their composition and roles in host-pathogen interactions, and the possible applications of EVs for vaccines and therapy development against staphylococcal infections.



Sign in / Sign up

Export Citation Format

Share Document