scholarly journals Delivery of Bioactive Gene Particles via Gelatin-Collagen-PEG-Based Electrospun Matrices

2021 ◽  
Vol 14 (7) ◽  
pp. 666
Author(s):  
Eleni Tsekoura ◽  
Porntipa Pankongadisak ◽  
Daniel Graf ◽  
Yaman Boluk ◽  
Hasan Uludağ

The fabrication of fiber mats via electrospinning has been adopted in the last decades to produce high quality scaffolds for tissue engineering. However, an effective combination of electrospinning methods with gene delivery therapies remains a challenge. In this study, we describe how the delivery of gene complexes via electrospun mats that contain different volumes of gelatin (Gel), collagen (Col), and polyethylene glycol (PEG) can affect gene expression by transfected cells. Non-viral complexes were formulated by using lipid modified polyethylenimine (PEI) polymer and plasmid DNAs (pDNA) like the reporter Green Fluorescent Protein (GFP) and the therapeutically relevant Bone Morphogenetic Protein-2 (BMP-2) and electrospuned after being mixed with different volumes of Gel-Col-PEG mats and delivered to human myoblast (C2C12) and mouse osteoblast cells (MC3T3). The entrapment of GFP complexes via different homogeneous electrospun fiber mats revealed that a high fraction of collagen in the mats affected the quality of the fibers and led to reduced transfection efficiency on target cells. On the other hand, the fabrication of double-layered mats that contained collagen without complexes as a first layer and gelatin-collagen-PEG with complexes as a second layer successfully induced GFP expression and ALP activity in C2C12 cells. We conclude that this study has established the advantage of formulating multilayered bioactive collagen-based mats for gene delivery applications.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1695
Author(s):  
Alexey Kuzmich ◽  
Olga Rakitina ◽  
Dmitry Didych ◽  
Victor Potapov ◽  
Marina Zinovyeva ◽  
...  

Nuclear proteins, like histone H2A, are promising non-viral carriers for gene delivery since they are biocompatible, biodegradable, bear intrinsic nuclear localization signal, and are easy to modify. The addition of surface-protein-binding ligand to histone H2A may increase its DNA delivery efficiency. Tumor microenvironment (TME) is a promising target for gene therapy since its surface protein repertoire is more stable than that of cancer cells. Cancer-associated fibroblasts (CAFs) are important components of TME, and one of their surface markers is beta-type platelet-derived growth factor receptor (PDGFRβ). In this study, we fused histone H2A with PDGFRβ-binding peptide, YG2, to create a novel non-viral fibroblast-targeting DNA carrier, H2A-YG2. The transfection efficiency of histone complexes with pDNA encoding a bicistronic reporter (enhanced green fluorescent protein, EGFP, and firefly luciferase) in PDGFRβ-positive and PDGFRβ-negative cells was estimated by luciferase assay and flow cytometry. The luciferase activity, percentage of transfected cells, and overall EGFP fluorescence were increased due to histone modification with YG2 only in PDGFRβ-positive cells. We also estimated the internalization efficiency of DNA-carrier complexes using tetramethyl-rhodamine-labeled pDNA. The ligand fusion increased DNA internalization only in the PDGFRβ-positive cells. In conclusion, we demonstrated that the H2A-YG2 carrier targeted gene delivery to PDGFRβ-positive tumor stromal cells.


2005 ◽  
Vol 71 (7) ◽  
pp. 4004-4013 ◽  
Author(s):  
A. V. Karlyshev ◽  
B. W. Wren

ABSTRACT The genetic investigation of Campylobacter jejuni, an important gastrointestinal pathogen, has been hampered by the lack of an efficient system for introduction of exogenous genetic information, as commonly used vectors designed for Escherichia coli and other bacteria cannot be maintained in Campylobacter cells. Additionally, gene expression in Campylobacter requires the presence of species-specific promoters. In this study we exploited the availability of several conserved copies of rRNA gene clusters for insertion of various genes into the chromosome by homologous recombination. The high conservation of the rRNA sequences means that the procedure can be applied to other Campylobacter strains. The presence of a Campylobacter-derived promoter in this vector ensures expression of exogenous genes in target cells. The efficiency of the procedure was demonstrated by complementation of mutations in two strains of Campylobacter. In addition, we applied the system for introduction and expression of a green fluorescent protein (GFP). GFP-expressing Campylobacter allowed visualization of sessile bacteria attached to a glass surface in stationary liquid culture. The study demonstrated that the attached bacteria contained an assemblage of coccoid and spiral forms with liquid channels preserving viable highly motile cells. We demonstrate a novel universal procedure for gene delivery and expression that can be used as an efficient tool to study this poorly understood pathogen. The principles developed in this study could be more widely applied for the manipulation of other bacteria that are refractory to genetic analysis.


2008 ◽  
Vol 8 (5) ◽  
pp. 2308-2315 ◽  
Author(s):  
Masahiko Furuhata ◽  
Radostin Danev ◽  
Kuniaki Nagayama ◽  
Yoshifumi Yamada ◽  
Hiroko Kawakami ◽  
...  

Oligoarginine conjugates are highly efficient vectors for the delivery of plasmid DNA into cells. Decaarginine-conjugated lipid (Arg10-PEG-lipid) was synthesized and the effects of Arg10-PEG-lipid concentration at a fixed DNA concentration on transfection efficiency and the structure of the complexes were studied below and above critical micelle concentration (CMC), and at the lipid nitrogen/DNA phosphate (N/P) ratio corresponding to transfection, respectively. Arg10-PEG-lipid at the concentration below CMC showed stronger interaction with DNA by fluorescence intensity distribution analysis, and significantly higher luciferase and green fluorescent protein expression than that above CMC. A phase-contrast cryo-transmission electron microscope (cryo-TEM) experiment showed that the morphology of the complexes depended on the N/P ratio. At a low N/P ratio corresponding to that in transfection at a lipid concentration below CMC, a net-like structure developed in which plasmid DNA was involved. A further increase in the N/P ratio, a large fibrous nanostructure of complexes, was also observed. Without DNA, these structures were not obtained. The cellular uptake mechanism of complexes using flow cytometry with inhibitors suggested that complexes with two different morphologies showed similar cellular uptake and uptake mechanism, macropinocytosis. Differences in transfection efficiency of the complexes may be explained by a large fibrous nanostructure inhibiting the cellular internalization of complexes or the release of DNA from macropinosomes into cytoplasm. Arg10-PEG-lipid/DNA complexes formed a favorable nanostructure for gene delivery, depending on the N/P ratio in water.


2013 ◽  
Vol 25 (1) ◽  
pp. 313 ◽  
Author(s):  
D. O. Forcato ◽  
M. F. Olmos Nicotra ◽  
N. M. Ortega ◽  
A. P. Alessio ◽  
A. E. Fili ◽  
...  

Cost-effective, highly efficient, and noncytotoxic transfection of bovine fetal fibroblasts (BFF) has proven difficult to achieve by regular chemical and physical methods. The aims of this study were to evaluate transient transfection efficiency and toxicity of commercially available branched 25 kDa polyethylenimine (25 kDa PEI, Sigma-Aldrich, St. Louis, MO, USA) and to optimize the transfection conditions leading to high percentages of PEI-transfected fibroblasts with minimum cytotoxic effects. Bovine fetal fibroblast (BFF) cells were seeded a day before transfection in 24-well plates at a density of 3 × 104 cells per well in DMEM with antibiotics and 10% SFB. When 70 to 90% confluence was reached, cells were washed with PBS and incubated in DMEM without antibiotics or SFB. For the transfection-mix preparation, increasing amounts of plasmidic DNA (pZsGreen1; 2 to 6 µg) were added to 50 µL of DMEM without antibiotics or SFB, incubated for 5 min at room temperature, and complexed with 0.5 to 4 µg of PEI (from 1 mg mL–1 solution) in 50 µL of PBS for 10 min. This transfection mix was added to the cell cultures and, 2 h later, 500 µL of DMEM with antibiotics and 10% SFB was added to each well. Detection of green fluorescent protein (GFP) expression by flow cytometry (reported as percentage of green fluorescent cells) was performed 48 h after transfection. Results were analysed by ANOVA and Tukey test and expressed as mean ± SEM (P < 0.05). We found no significant difference between the percentage of GFP-positive cells transfected with 1 or 2 µg of 25 kDa PEI at 2 µg of DNA/well (15.2 ± 1.3 v. 16.9 ± 0.9%, respectively; P > 0.05), whereas cells transfected with 1 or 2 µg of low-molecular-weight PEI (2 kDa) showed extremely low transfection efficiencies. Increasing the DNA load up to 6 µg significantly enhanced cell transfection (3.5- and 6-fold comparing 2 µg v. 4 µg and 6 µg of DNA, respectively; P < 0.05) at 1 and 2 µg of 25 kDa PEI/well. In order to evaluate the cytotoxic effect of PEI, cell viability was determined using the MTT assay in 96-well plates (cells/well), with each condition scaled down to replicate the effect of 2 kDa or 25 kDa PEI in a 24-well plate. The MTT results (expressed as % of the control) indicated that PEI became cytotoxic at concentrations equivalent to 2 and 4 µg/well (54.7 ± 3.4 and 18.5 ± 5.7, respectively), whereas 1 µg/well produced a slight detrimental effect on cell viability (90.0 ± 2.6). No evidence of cytotoxicity was observed when the BFF were incubated with 0.5 µg/well of 25 kDa PEI and 1 or 2 µg/well of 2 kDa PEI. To study if a combination of low- and high-molecular-weight PEI could improve transfection efficiency and reduce toxicity, we tested a mixture (1 : 1) of 2 kDa and 25 kDa PEI. Even though the 1 : 1 mixture was less cytotoxic, the efficiency of gene delivery was not improved. We conclude that, under our experimental conditions, the highest percentage of GFP-expressing cells with good viability was obtained when 1 µg of 25 kDa PEI was added per well. Therefore, branched 25 kDa PEI transfection represents an efficient, simple, and cost-effective alternative for gene delivery in bovine fibroblast cells in culture.


2020 ◽  
Vol 27 (8) ◽  
pp. 698-710
Author(s):  
Roya Cheraghi ◽  
Mahboobeh Nazari ◽  
Mohsen Alipour ◽  
Saman Hosseinkhani

Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danielle Weber-Adrian ◽  
Rikke Hahn Kofoed ◽  
Joseph Silburt ◽  
Zeinab Noroozian ◽  
Kairavi Shah ◽  
...  

AbstractNon-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood–brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.


2005 ◽  
Vol 342 (2) ◽  
pp. 341-344 ◽  
Author(s):  
Dineshkumar H. Dandekar ◽  
Manish Kumar ◽  
Jayashree S. Ladha ◽  
Krishna N. Ganesh ◽  
Debashis Mitra

2018 ◽  
Vol 10 (4) ◽  
pp. 12
Author(s):  
Mahipal Singh ◽  
Xiaoling Ma

Dermal fibroblasts are useful for production of genetically engineered biologically active factors for development of cellular therapies and tissue engineering products for regenerative medicine. However, their transfection efficiencies using traditional non-viral methods are low and vary based on cell-type and species-specific differences. Using nucleofection technology, here we show that the transfection efficiency of primary fibroblasts established after 0-, 35-, and 65-days of postmortem storage of sheep skin tissues in a refrigerator was 59.49 % ± 9.66 %, 59.33 % ± 11.59 %, and 43.48 % ± 8.09 % respectively, as determined by analysis of green fluorescent protein (GFP) expression. 


2014 ◽  
Vol 89 (4) ◽  
pp. 2192-2200 ◽  
Author(s):  
Linda J. Rennick ◽  
Rory D. de Vries ◽  
Thomas J. Carsillo ◽  
Ken Lemon ◽  
Geert van Amerongen ◽  
...  

ABSTRACTAlthough live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replicationin vivoare still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston-Zagreb (EZ), allowing recovery of recombinant (r)MVEZ. Three recombinant viruses were generated that contained the open reading frame encoding enhanced green fluorescent protein (EGFP) within an additional transcriptional unit (ATU) at various positions within the genome. rMVEZEGFP(1), rMVEZEGFP(3), and rMVEZEGFP(6) contained the ATU upstream of the N gene, following the P gene, and following the H gene, respectively. The viruses were comparedin vitroby growth curves, which indicated that rMVEZEGFP(1) was overattenuated. Intratracheal infection of cynomolgus macaques with these recombinant viruses revealed differences in immunogenicity. rMVEZEGFP(1) and rMVEZEGFP(6) did not induce satisfactory serum antibody responses, whereas bothin vitroandin vivorMVEZEGFP(3) was functionally equivalent to the commercial MVEZ-containing vaccine. Intramuscular vaccination of macaques with rMVEZEGFP(3) resulted in the identification of EGFP+cells in the muscle at days 3, 5, and 7 postvaccination. Phenotypic characterization of these cells demonstrated that muscle cells were not infected and that dendritic cells and macrophages were the predominant target cells of live-attenuated MV.IMPORTANCEEven though MV strain Edmonston-Zagreb has long been used as a live-attenuated vaccine (LAV) to protect against measles, nothing is known about the primary cells in which the virus replicatesin vivo. This is vital information given the push to move toward needle-free routes of vaccination, since vaccine virus replication is essential for vaccination efficacy. We have generated a number of recombinant MV strains expressing enhanced green fluorescent protein. The virus that best mimicked the nonrecombinant vaccine virus was formulated according to protocols for production of commercial vaccine virus batches, and was subsequently used to assess viral tropism in nonhuman primates. The virus primarily replicated in professional antigen-presenting cells, which may explain why this LAV is so immunogenic and efficacious.


2006 ◽  
Vol 80 (19) ◽  
pp. 9361-9370 ◽  
Author(s):  
Penny A. Rudd ◽  
Roberto Cattaneo ◽  
Veronika von Messling

ABSTRACT Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses.


Sign in / Sign up

Export Citation Format

Share Document