scholarly journals Current Advances in Lipid and Polymeric Antimicrobial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1840
Author(s):  
Miriam E. van Gent ◽  
Muhanad Ali ◽  
Peter H. Nibbering ◽  
Sylvia N. Kłodzińska

Bacterial infections constitute a threat to public health as antibiotics are becoming less effective due to the emergence of antimicrobial resistant strains and biofilm and persister formation. Antimicrobial peptides (AMPs) are considered excellent alternatives to antibiotics; however, they suffer from limitations related to their peptidic nature and possible toxicity. The present review critically evaluates the chemical characteristics and antibacterial effects of lipid and polymeric AMP delivery systems and coatings that offer the promise of enhancing the efficacy of AMPs, reducing their limitations and prolonging their half-life. Unfortunately, the antibacterial activities of these systems and coatings have mainly been evaluated in vitro against planktonic bacteria in less biologically relevant conditions, with only some studies focusing on the antibiofilm activities of the formulated AMPs and on the antibacterial effects in animal models. Further improvements of lipid and polymeric AMP delivery systems and coatings may involve the functionalization of these systems to better target the infections and an analysis of the antibacterial activities in biologically relevant environments. Based on the available data we proposed which polymeric AMP delivery system or coatings could be profitable for the treatment of the different hard-to-treat infections, such as bloodstream infections and catheter- or implant-related infections.

2005 ◽  
Vol 49 (10) ◽  
pp. 4185-4196 ◽  
Author(s):  
Yutaka Ueda ◽  
Katsunori Kanazawa ◽  
Ken Eguchi ◽  
Koji Takemoto ◽  
Yoshiro Eriguchi ◽  
...  

ABSTRACT SM-216601 is a novel parenteral 1β-methylcarbapenem. In agar dilution susceptibility testing, the MIC of SM-216601 for 90% of the methicillin-resistant Staphylococcus aureus (MRSA) strains tested (MIC90) was 2 μg/ml, which was comparable to those of vancomycin and linezolid. SM-216601 was also very potent against Enterococcus faecium, including vancomycin-resistant strains (MIC90 = 8 μg/ml). SM-216601 exhibited potent activity against penicillin-resistant Streptococcus pneumoniae, ampicillin-resistant Haemophilus influenzae, Moraxella catarrhalis, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, with MIC90s of less than 0.5 μg/ml, and intermediate activity against Citrobacter freundii, Enterobacter cloacae, Serratia marcescens, and Pseudomonas aeruginosa. The therapeutic efficacy of SM-216601 against experimentally induced infections in mice caused by S. aureus, E. faecium, E. coli, and P. aeruginosa reflected its in vitro activity and plasma level. Thus, SM-216601 is a promising candidate for nosocomial bacterial infections caused by a wide range of gram-positive and gram-negative bacteria, including multiresistant pathogens.


2021 ◽  
Vol 14 (2) ◽  
pp. 077-086
Author(s):  
Oluremi Adejoke Akinwale ◽  
Uyi Oluwatobi Emokpae ◽  
Opeyemi Mariam Adebogun ◽  
Morenike Olutumbi Adeoye-Isijola ◽  
Olufunmiso Olusola Olajuyigbe

The study investigated the in vitro effects of quinine on the antibacterial activity of erythromycin for possible interactions. The antibacterial activities of each drug and their combinations were investigated by agar diffusion, agar and macrobroth dilution methods. While 100 µl of 1000 µg/ml of erythromycin produced inhibition zones ranging between 13 and 31 ± 1.0 mm in all the isolates except K. pneumoniae and P. aeruginosa ATCC 19582, combining the highest concentration of erythromycin with 35 µg/ml of quinine produced inhibition zones ranging between 14 and 34 ± 1.0 mm with the exception of S. flexneri KZN. Though quinine had no antibacterial effects on the isolates, erythromycin was effective at minimum inhibitory concentrations (MICs) ranging between 25 and 100 µg/ml while their combinations resulted in reduction of MICs of most of the isolates to 12.5 µg/ml except those against A. calcaoceuticus anitratus CSIR, Ps. aeruginosa ATCC 15442, P. shigelloides ATCC 51903, A. hydrophila ATCC 35654, Ps. aeruginosa ATCC 19582 and E. faecalis KZN that remained unchanged in agar dilution. While the MICs of erythromycin ranged between 25 and 50 µg/ml, the MICs of this antibiotic was reduced to concentrations ranging between 12.5 and 50 µg/ml indicating 50% to 75% in the presence of quinine. The combination of erythromycin and quinine, in vitro, resulted in synergistic (50%), additive/indifference (44.44%) and antagonistic (11.11%) interactions while quinine at concentrations lower than plasma quinine concentrations was inhibitory to the antibacterial activity of erythromycin. The synergistic effect may serve as remedy for bacterial infections in which the test bacteria have been implicated.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1773
Author(s):  
Patchima Sithisarn ◽  
Piyanuch Rojsanga ◽  
Pongtip Sithisarn

Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


2020 ◽  
Vol 10 (6) ◽  
pp. 7343-7355

The purpose of our study was to bring elements of knowledge on the anticancer and antibacterial effects of two plants, widely used in Moroccan traditional pharmacopeia. These plants are: Marrubium vulgare and Euphorbia resinifera. The aerial parts of each plant were extracted successively with Hexane, Dichloromethane, and finally with methanol. The MTT-based method was applied to evaluate the cytotoxicity of the cancer cells: animal cells BSR and Vero and human cell RD. We evidenced an anticancer activity of the extract of the Marrubium vulgare and the dichloromethane extract of Euphorbia resinifera against the studied cells. The antibacterial activity was evaluated for three species of Rhodococcus: Rhodococcus equi, and strains GK1, GK3, grown in a liquid medium, or this medium solidified with agar. In the last test, the method is based on substance diffusion from well throughout the solid medium. The obtained profiles showed that the growth of bacteria is strongly inhibited by the extracts of Marrubium vulgare. However, the extracts of Euphorbia resinifera had no significant effect on bacterial growth. The chemical analysis of the raw extracts of Marrubium vulgare and Euphorbia resinifera by GC-MS analysis showed the presence of several major chemical compounds, mainly: octadecane, 2,6,10,15-tetramethylheptadecane, 2,6,10-trimethyltetradecane, linoleic acid, and deisopropylatrazine. Our observations an encouraging for deepening the studies of the extracts, in order to target better the active molecules, isolate them and to determine their mechanisms of action. The suggested studies would result in the much better valorization of these two medicinal plants.


1996 ◽  
Vol 40 (6) ◽  
pp. 1376-1381 ◽  
Author(s):  
H H Locher ◽  
H Schlunegger ◽  
P G Hartman ◽  
P Angehrn ◽  
R L Then

Epiroprim (EPM; Ro 11-8958) is a new selective inhibitor of microbial dihydrofolate reductase. EPM displayed excellent activity against staphylococci, enterococci, pneumococci, and streptococci which was considerably better than that of trimethoprim (TMP). EPM was also active against TMP-resistant strains, although the MICs were still relatively high. Its combination with dapsone (DDS) was synergistic and showed as in vitro activity superior to that of the TMP combination with sulfamethoxazole (SMZ). The EPM-DDS (ratio, 1:19) combination inhibited more than 90% of all important gram-positive pathogens at a concentration of 2 + 38 micrograms/ml. Only a few highly TMP-resistant staphylococci and enterococci were not inhibited. EPM was also more active than TMP against Moraxella catarrhalis, Neisseria meningitidis, and Bacteroides spp., but it was less active than TMP against all other gram-negative bacteria tested. Atypical mycobacteria were poorly susceptible to EPM, but the combination with DDS was synergistic and active at concentrations most probably achievable in biological fluids (MICs from 0.25 +/- 4.75 to 4 + 76 micrograms/ml). EPM and the EPM-DDS combination were also highly active against experimental staphylococcal infections in a mouse septicemia model. The combination EPM-DDS has previously been shown to exhibit activity in Pneumocystis carinii and Toxoplasma models and, as shown in the present study, also shows good activity against a broad range of bacteria including many strains resistant to TMP and TMP-SMZ.


1998 ◽  
Vol 42 (12) ◽  
pp. 3153-3156 ◽  
Author(s):  
Aldona L. Baltch ◽  
Raymond P. Smith ◽  
Mary A. Franke ◽  
Phyllis B. Michelsen

ABSTRACT The antibacterial activities of levofloxacin, erythromycin, and rifampin against intracellular Legionella pneumophilaL-1033, serogroup 1, were studied. In an in vitro system utilizing adherent human monocytes, L. pneumophila L-1033, a phagocytosis time period of 1 h, and antibiotic (levofloxacin, erythromycin, and/or rifampin) at 1 to 10 times the MIC, the CFU/ml values for the monocyte lysate were determined during 0- to 4-day time periods. The decrease in CFU/ml with levofloxacin at pH 7.4 was rapid, occurring within 24 h, and was drug concentration dependent (P < 0.01). The decrease in CFU with rifampin was first observed at 48 h (P < 0.01), while only a minimal decrease in CFU/ml was observed with erythromycin. Combination of levofloxacin and rifampin and of levofloxacin and erythromycin at ten times their MICs significantly decreased the CFU/ml value (P < 0.01), to the value attained by levofloxacin alone, while combination of rifampin and erythromycin did not. Removal of levofloxacin after 24 h of incubation resulted in regrowth ofL. pneumophila L-1033, while a continued slow decrease in CFU/ml was seen following rifampin removal; CFU/ml values were unaffected by the removal of erythromycin. At 4 days, and even in assays performed following antibiotic removal, the CFU/ml value continued to be lower in the levofloxacin and rifampin assays than in the assays with erythromycin. Levofloxacin had a significantly higher bactericidal activity against L. pneumophila L-1033 than erythromycin or rifampin. In these assays, the addition of erythromycin or rifampin did not affect the antibacterial activity of levofloxacin.


2002 ◽  
Vol 46 (3) ◽  
pp. 904-908 ◽  
Author(s):  
Mayumi Tanaka ◽  
Emi Yamazaki ◽  
Megumi Chiba ◽  
Kiyomi Yoshihara ◽  
Takaaki Akasaka ◽  
...  

ABSTRACT The antibacterial activity of DQ-113, formerly D61-1113, was compared with those of antibacterial agents currently available. MICs at which 90% of the isolates tested are inhibited (MIC90s) of DQ-113 against clinical isolates of methicillin-susceptible and -resistant Staphylococcus aureus and methicillin-susceptible and -resistant coagulase-negative staphylococci were 0.03, 0.008, 0.03, and 0.06 μg/ml, respectively. Moreover, DQ-113 showed the most potent activity against ofloxacin-resistant and methicillin-resistant S. aureus, with a MIC90 of 0.25μg/ml. DQ-113 inhibited the growth of all strains of Streptococcus pneumoniae, including penicillin-resistant strains, and Streptococcus pyogenes at 0.06 μg/ml, and DQ-113 was more active than the other quinolones tested against Enterococcus faecalis and Enterococcus faecium with MIC90s of 0.25 and 2 μg/ml, respectively. Against vancomycin-resistant enterococci, DQ-113 showed the highest activity among the reference compounds, with a MIC range from 0.25 to 2 μg/ml. DQ-113 also showed a potent activity against Haemophilus influenzae, including ampicillin-resistant strains (MIC90, 0.015 μg/ml), and Moraxella catarrhalis (MIC90, 0.03 μg/ml). The activity of DQ-113 was roughly comparable to that of levofloxacin against all species of Enterobacteriaceae. The MICs of DQ-113 against ofloxacin-susceptible Pseudomonas aeruginosa ranged from 0.25 to 2 μg/ml, which were four times higher than those of ciprofloxacin. From these results, DQ-113 showed the most potent activity against gram-positive pathogens among antibacterial agents tested.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Gaëlle S. Nguenang ◽  
Armelle T. Mbaveng ◽  
Aimé G. Fankam ◽  
Hermione T. Manekeng ◽  
Paul Nayim ◽  
...  

In order to contribute to the fight against infectious diseases, thein vitroantibacterial activity and the antibiotic-potentiating effects ofTristemma hirtumand five other Cameroonian edible plants have been evaluated against Gram-negative multidrug-resistant (MDR) phenotypes. The microdilution method was used to evaluate the bacterial susceptibility of the extracts and their combination to common antibiotics. The phytochemical screening of the extracts was carried out according to standard methods. Phytochemical analysis of the extracts revealed the presence of alkaloids, triterpenes, steroids, and polyphenols, including flavonoids in most of the tested extracts. The entire tested extracts showed moderate (512 μg/mL ≤ MIC ≤ 2048 μg/mL) to weak (MIC > 2048 μg/mL) antibacterial activities against the tested bacteria. Furthermore, extracts of leaf ofTristemma hirtumand pericarpsofRaphia hookeri(at their MIC/2 and MIC/4) strongly potentiated the activities of all antibiotics used in the study, especially those of chloramphenicol (CHL), ciprofloxacin (CIP), kanamycin (KAN), and tetracycline (TET) against 70% (7/10) to 100% (10/10) of the tested MDR bacteria, with the modulating factors ranging from 2 to 128. The results of this study suggest that extracts from leaves ofTristemma hirtumand pericarps ofRaphia hookerican be sources of plant-derived products with antibiotic modifying activity.


Author(s):  
Samuel Füchtbauer ◽  
Soraya Mousavi ◽  
Stefan Bereswill ◽  
Markus M. Heimesaat

AbstractAntibiotic resistance is endangering public health globally and gives reason for constant fear of virtually intractable bacterial infections. Given a limitation of novel antibiotic classes brought to market in perspective, it is indispensable to explore novel, antibiotics-independent ways to fight bacterial infections. In consequence, the antibacterial properties of natural compounds have gained increasing attention in pharmacological sciences. We here performed a literature survey regarding the antibacterial effects of capsaicin and its derivatives constituting natural compounds of chili peppers. The studies included revealed that the compounds under investigation exerted i.) both direct and indirect antibacterial properties in vitro depending on the applied concentrations and the bacterial strains under investigation; ii.) synergistic antibacterial effects in combination with defined antibiotics; iii.) resistance-modification via inhibition of bacterial efflux pumps; iv.) attenuation of bacterial virulence factor expression; and v.) dampening of pathogen-induced immunopathological responses. In conclusion, capsaicin and its derivatives comprise promising antimicrobial molecules which could complement or replace antibiotic treatment strategies to fight bacterial infections. However, a solid basis for subsequent clinical trials requires future investigations to explore the underlying molecular mechanisms and in particular pharmaceutical evaluations in animal infection models.


Sign in / Sign up

Export Citation Format

Share Document