scholarly journals Design of Bio-Responsive Hyaluronic Acid–Doxorubicin Conjugates for the Local Treatment of Glioblastoma

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Alessio Malfanti ◽  
Giuseppina Catania ◽  
Quentin Degros ◽  
Mingchao Wang ◽  
Mathilde Bausart ◽  
...  

Glioblastoma is an unmet clinical need. Local treatment strategies offer advantages, such as the possibility to bypass the blood–brain barrier, achieving high drug concentrations at the glioblastoma site, and consequently reducing systemic toxicity. In this study, we evaluated the feasibility of using hyaluronic acid (HA) for the local treatment of glioblastoma. HA was conjugated to doxorubicin (DOX) with distinct bio-responsive linkers (direct amide conjugation HA-NH-DOX), direct hydrazone conjugation (HA-Hz-DOX), and adipic hydrazone (HA-AdpHz-DOX). All HA-DOX conjugates displayed a small size (less than 30 nm), suitable for brain diffusion. HA-Hz-DOX showed the best performance in killing GBM cells in both 2D and 3D in vitro models and displayed superior activity in a subcutaneous GL261 tumor model in vivo compared to free DOX and other HA-DOX conjugates. Altogether, these results demonstrate the feasibility of HA as a polymeric platform for the local treatment of glioblastoma and the importance of rationally designing conjugates.

Author(s):  
Donatella Di Lisa ◽  
Mariateresa Tedesco ◽  
Elena Dellacasa ◽  
Mattia Pesce ◽  
Tiziano Catelani ◽  
...  

The increase of different types of cell cultures, which can be used for the in vitro studies of physiological and/or pathological processes, has introduced the need to improve culture techniques through the use of materials and culture media that promote growth, recreating a cellular micro-environment that can be asserted in in vivo condition. The standard methods for the functionalization of supports used for cell cultures are based on the use of synthetic or natural biopolymers, which generally have high costs, such as poly-lysine and polyornithine. The aim of this work is to demonstrate the alternative use of the polysaccharide chitosan as adhesion factor and structural component for 2D/3D neuronal cultures. Thanks to its versatility, it could be easily functionalized for the fabrication of personalized of in vitro models


2020 ◽  
Author(s):  
Wei Gan ◽  
Mei-Xia Zhang ◽  
Jin-Long Huang ◽  
Pei-Yun Zhou ◽  
Cheng Zhou ◽  
...  

Abstract Background: Recently, more and more treatment strategies for Hepatocellular carcinoma (HCC) have emerged, but the therapeutic effect is still not satisfactory. This study is aimed to explore the mechanism of Interleukin 35 (IL-35) in promoting the progression of liver cancer and to explore the application value of IL-35 in the treatment of HCC.Methods: We used clinical tissue microarray (TMA) immunohistochemistry (IHC) to explore the prognostic value of IL-35 expression in patients with HCC. The effect of IL-35 on the function of HCC was explored by functional experiments including wound-healing assay, transwell, cell counting kit-8, cell adhesion assay and endothelial tube formation assay in vitro and mouse xenografts in vivo. And flow cytometry was used to study the effect of IL-35 on infiltrating immune cells in tumor. The molecular mechanism of the function of IL-35 on the progression of HCC was explored by sequencing, ELISA, WB, PCR and other technical means. Finally, through in vivo tumor animal experiments to explore the value of anti-IL-35 antibody and combined with anti-PD-1 antibody in the treatment of liver cancer.Results: High expression of IL-35 in patients with HCC were identified to be associated with poor prognosis. And we have found that IL-35 facilitated tumor progression by affecting neutrophil infiltration, angiogenesis, and CD8+ T-cell infiltration in a mouse model. Additionally, on the one hand C-C motif chemokine ligand 3 (CCL3) has been found to be a key factor mediating the recruitment of neutrophils by IL-35, on the other hand fibroblast growth factor 2 (FGF2) secreting by neutrophil when stimulated by IL-35 was also found to be the core cytokine to promote intratumoral angiogenesis. And IL-35 was also discovered to facilitated the adhesion of tumor to endothelial cells, with neutrophils further enhancing this effect in vitro and vivo. More important, anti-IL-35 antibody was found to be a valid treatment for HCC in xenograft tumor model, and it could give full play to the curative effect of 1:1>2 when combination therapy with PD-1 antibody.Conclusion: Our data show that the expression of IL-35 in patients with HCC is an important tumor promoting factor. The application of anti-IL-35 antibody and treatment combined anti-IL-35 antibody with anti-PD-1 antibody have potential therapeutic value in the treatment of liver cancer.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1094
Author(s):  
Caitlin O. Caperton ◽  
Lee Ann Jolly ◽  
Nicole Massoll ◽  
Andrew J. Bauer ◽  
Aime T. Franco

Recent developments in thyroid cancer research have been hindered by a lack of validated in vitro models, allowing for preclinical experimentation and the screening of prospective therapeutics. The goal of this work is to develop and characterize three novel follicular thyroid cancer (FTC) cell lines developed from relevant animal models. These cell lines recapitulate the genetics and histopathological features of FTC, as well as progression to a poorly differentiated state. We demonstrate that these cell lines can be used for a variety of in vitro applications and maintain the potential for in vivo transplantation into immunocompetent hosts. Further, cell lines exhibit differing degrees of dysregulated growth and invasive behavior that may help define mechanisms of pathogenesis underlying the heterogeneity present in the patient population. We believe these novel cell lines will provide powerful tools for investigating the molecular basis of thyroid cancer progression and lead to the development of more personalized diagnostic and treatment strategies.


2020 ◽  
Vol 2 (3) ◽  
pp. 157-181 ◽  
Author(s):  
Sabrina Ehnert ◽  
Caren Linnemann ◽  
Romina H. Aspera-Werz ◽  
Victor Häussling ◽  
Bianca Braun ◽  
...  

Today, over 70 diseases and health conditions are known that negatively affect the bone quality directly or indirectly by their medical treatment, establishing the term metabolic bone disease. Already every third hospitalized patient in Europe suffers from musculoskeletal injuries or diseases. Facing an ageing society and a more and more sedentary lifestyle the number of chronic diseases and consequently metabolic bone diseases are expected to continuously increase. In order to investigate the various disease constellations and/or develop new treatment strategies suitable models representing bone metabolism are required. Many in vivo, ex vivo and in vitro models have been described, which have their advantages and limits. We here summarize the advantages and challenges of frequently used models to investigate bone metabolism, focusing on in vitro co-cultures of bone forming osteoblasts and osteoclasts. Comparing own data with published models, we further elaborate the feasibility of commonly used cells lines for such in vitro co-culture models, in order to provide an easy, constantly available, and up-scalable model system for screening alterations in bone metabolism.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1485
Author(s):  
Wisse van Os ◽  
Markus Zeitlinger

Antibiotic dosing strategies are generally based on systemic drug concentrations. However, drug concentrations at the infection site drive antimicrobial effect, and efficacy predictions and dosing strategies should be based on these concentrations. We set out to review different translational pharmacokinetic-pharmacodynamic (PK/PD) approaches from a target site perspective. The most common approach involves calculating the probability of attaining animal-derived PK/PD index targets, which link PK parameters to antimicrobial susceptibility measures. This approach is time efficient but ignores some aspects of the shape of the PK profile and inter-species differences in drug clearance and distribution, and provides no information on the PD time-course. Time–kill curves, in contrast, depict bacterial response over time. In vitro dynamic time–kill setups allow for the evaluation of bacterial response to clinical PK profiles, but are not representative of the infection site environment. The translational value of in vivo time–kill experiments, conversely, is limited from a PK perspective. Computational PK/PD models, especially when developed using both in vitro and in vivo data and coupled to target site PK models, can bridge translational gaps in both PK and PD. Ultimately, clinical PK and experimental and computational tools should be combined to tailor antibiotic treatment strategies to the site of infection.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1366 ◽  
Author(s):  
Yakavets ◽  
Millard ◽  
Lamy ◽  
Francois ◽  
Scheglmann ◽  
...  

The balance between the amount of drug delivered to tumor tissue and the homogeneity of its distribution is a challenge in the efficient delivery of photosensitizers (PSs) in photodynamic therapy (PDT) of cancer. To date, many efforts have been made using various nanomaterials to efficiently deliver temoporfin (mTHPC), one of the most potent photosensitizers. The present study aimed to develop double-loaded matryoshka-type hybrid nanoparticles encapsulating mTHPC/cyclodextrin inclusion complexes in mTHPC-loaded liposomes. This system was expected to improve the transport of mTHPC to target tissues and to strengthen its accumulation in the tumor tissue. Double-loaded hybrid nanoparticles (DL-DCL) were prepared, characterized, and tested in 2D and 3D in vitro models and in xenografted mice in vivo. Our studies indicated that DL-DCL provided deep penetration of mTHPC into the multicellular tumor spheroids via cyclodextrin nanoshuttles once the liposomes had been destabilized by serum proteins. Unexpectedly, we observed similar PDT efficiency in xenografted HT29 tumors for liposomal mTHPC formulation (Foslip®) and DL-DCL.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4032
Author(s):  
Kadie Edwards ◽  
Seydou Yao ◽  
Simone Pisano ◽  
Veronica Feltracco ◽  
Katja Brusehafer ◽  
...  

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Mariusz Dziadas ◽  
Adam Junka ◽  
Henryk Jeleń

Eugenyl-β-D-glucopyranoside, also referred to as Citrusin C, is a natural glucoside found among others in cloves, basil and cinnamon plants. Eugenol in a form of free aglycone is used in perfumeries, flavourings, essential oils and in medicinal products. Synthetic Citrusin C was incubated with human saliva in several in vitro models together with substrate-specific enzyme and antibiotics (clindamycin, ciprofloxacin, amoxicillin trihydrate and potassium clavulanate). Citrusin C was detected using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Citrusin C was completely degraded only when incubated with substrate-specific A. niger glucosidase E.C 3.2.1.21 (control sample) and when incubated with human saliva (tested sample). The addition of antibiotics to the above-described experimental setting, stopped Citrusin C degradation, indicating microbiologic origin of hydrolysis observed. Our results demonstrate that Citrusin C is subjected to complete degradation by salivary/oral cavity microorganisms. Extrapolation of our results allows to state that in the human oral cavity, virtually all β-D-glucosides would follow this type of hydrolysis. Additionally, a new method was developed for an in vivo rapid test of glucosidase activity in the human mouth on the tongue using fluorescein-di-β-D-glucoside as substrate. The results presented in this study serve as a proof of concept for the hypothesis that microbial hydrolysis path of β-D-glucosides begins immediately in the human mouth and releases the aglycone directly into the gastrointestinal tract.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Sign in / Sign up

Export Citation Format

Share Document