scholarly journals Chitosan biopolymer: Alternative adhesion factor and scaffold matrix for 2D and 3D neuronal cultures

Author(s):  
Donatella Di Lisa ◽  
Mariateresa Tedesco ◽  
Elena Dellacasa ◽  
Mattia Pesce ◽  
Tiziano Catelani ◽  
...  

The increase of different types of cell cultures, which can be used for the in vitro studies of physiological and/or pathological processes, has introduced the need to improve culture techniques through the use of materials and culture media that promote growth, recreating a cellular micro-environment that can be asserted in in vivo condition. The standard methods for the functionalization of supports used for cell cultures are based on the use of synthetic or natural biopolymers, which generally have high costs, such as poly-lysine and polyornithine. The aim of this work is to demonstrate the alternative use of the polysaccharide chitosan as adhesion factor and structural component for 2D/3D neuronal cultures. Thanks to its versatility, it could be easily functionalized for the fabrication of personalized of in vitro models

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3295
Author(s):  
Federica Foglietta ◽  
Loredana Serpe ◽  
Roberto Canaparo

Stimuli-responsive drug-delivery systems (DDSs) have emerged as a potential tool for applications in healthcare, mainly in the treatment of cancer where versatile nanocarriers are co-triggered by endogenous and exogenous stimuli. Two-dimensional (2D) cell cultures are the most important in vitro model used to evaluate the anticancer activity of these stimuli-responsive DDSs due to their easy manipulation and versatility. However, some limitations suggest that these in vitro models poorly predict the outcome of in vivo studies. One of the main drawbacks of 2D cell cultures is their inadequate representation of the 3D environment’s physiological complexity, which sees cells interact with each other and the extracellular matrix (ECM) according to their specific cellular organization. In this regard, 3D cancer models are a promising approach that can overcome the main shortcomings of 2D cancer cell cultures, as these in vitro models possess many peculiarities by which they mimic in vivo tumors, including physiologically relevant cell–cell and cell–ECM interactions. This is, in our opinion, even more relevant when a stimuli-responsive DDS is being investigated. In this review, we therefore report and discuss endogenous and exogenous stimuli-responsive DDSs whose effectiveness has been tested using 3D cancer cell cultures.


1990 ◽  
Vol 258 (6) ◽  
pp. C1062-C1069 ◽  
Author(s):  
I. Corthesy-Theulaz ◽  
A. M. Merillat ◽  
P. Honegger ◽  
B. C. Rossier

The existence of at least three isoforms of Na(+)-K(+)-ATPase in adult brain tissues [alpha 1, kidney type; alpha 2 [or alpha(+)]; alpha 3] suggests that these genes might be regulated in a cell-specific and time-dependent manner during development. We have studied this question in serum-free aggregating cell cultures of mechanically dissociated rat fetal telencephalon. At the protein level, the relative rate of synthesis of the pool of alpha 1-, alpha 2-, and alpha 3-subunits increased approximately twofold over 15 days of culture, leading to a marked increase in the immunochemical pool of alpha-subunits as measured by a panspecific polyclonal antibody. Concomitantly, Na(+)-K(+)-ATPase enzyme-specific activity increased three- (lower forebrain) to sixfold (upper forebrain). The transcripts of all three alpha-isoforms and beta-subunit were detected in vitro in similar proportion to the level observed in vivo. alpha 3-mRNA (3.7 kb) was more abundant than alpha 1 (3.7 kb) or alpha 2 (5.3 and 3.4 kb). Cytosine arabinoside (0.4 microM) and cholera toxin (0.1 microM) were used to selectively eliminate glial cells or neurons, respectively. It was found that alpha 2-mRNA is predominantly transcribed in glial cell cultures, whereas alpha 3- and beta 1-mRNA (2.7, 2.3, and 1.8 kb) are predominant in neuronal cultures.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244513
Author(s):  
Jana Koch ◽  
Dina Mönch ◽  
Annika Maaß ◽  
Christian Gromoll ◽  
Thomas Hehr ◽  
...  

Although 2D cell cultures are commonly used to predict therapy response, it has become clear that 3D cultures may better mimic the in vivo situation and offer the possibility of tailoring translational clinical approaches. Here, we compared the response of 2D and 3D colorectal cancer (CRC) cell lines to irradiation and chemotherapy. Classic 2D cultures and 3D spheroids of CRC cell lines (CaCo2, Colo205, HCT116, SW480) were thoroughly established, then irradiated with doses of 1, 4, or 10 Gy, using a clinical-grade linear accelerator. The response was assessed by immunohistochemistry, flow cytometry, and TUNEL assays. Upon irradiation, CRC 3D spheroids were morphologically altered. After irradiation with 10 Gy, annexin V/PI staining revealed a 1.8- to 4-fold increase in the apoptosis rate in the 2D cell cultures (95% CI 3.24±0.96), and a 1.5- to 2.4-fold increase in the 3D spheroids (95% CI 1.56±0.41). Irradiation with 1 Gy caused 3- and 4-fold increases in TUNEL positive cells in the CaCo2 and HCT116 (p = 0.01) 2D cultures, respectively, compared with a 2-fold increase in the 3D spheroids. Furthermore, the 2D and 3D cultures responded differently to chemotherapy; the 3D cultures were more resistant to 5-FU and cisplatin, but not to doxorubicin and mitomycin C, than the 2D cultures. Taken together, CRC cells cultured as 3D spheroids displayed markedly higher resistance to irradiation therapy and selected chemotherapeutic drugs than 2D cultures. This in vitro difference must be considered in future approaches for determining the ideal in vitro systems that mimic human disease.


2017 ◽  
Vol 71 (1) ◽  
pp. 0-0 ◽  
Author(s):  
Anna Słońska ◽  
Joanna Cymerys

In vitro models utilizing cells in planar two-dimensional (2D) cultures do not reflect the in vivo environment and are increasingly replaced by three-dimensional (3D) cultures. Fundamental differences between 2D and 3D cell cultures systems include cell attach, spread and grow, their morphology, proliferation, differentiation or gene and protein expression. For that reason 3D models have been proven to be invaluable tools of study for the various fields of science, such as drug discovery, cancer research, differentiation studies or neuroscience. In the present review, we discuss 3D neural in vitro models that might provide important insides about the mechanisms of pathogenesis of neurodegenerative diseases.


Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1841-1849 ◽  
Author(s):  
Annegret Blume ◽  
Luz Torner ◽  
Ying Liu ◽  
Sivan Subburaju ◽  
Greti Aguilera ◽  
...  

Prolactin (PRL) modulates maternal behavior and mediates hypothalamic pituitary adrenal axis inhibition during lactation via PRL receptors in the brain. To identify mechanisms mediating these effects, we examined the effects of PRL on signaling and CRH transcription in hypothalamic neurons in vivo and in vitro. Western blot of hypothalamic proteins from rats receiving intracerebroventricular PRL injection revealed increases in phosphorylation of the MAPK and ERK. Double-staining immunohistochemistry demonstrated phosphorylated ERK localization in parvocellular CRH neurons as well as magnocellular vasopressin and oxytocin neurons of the hypothalamic paraventricular (PVN) and supraoptic nuclei. PRL also induced ERK phosphorylation in vitro in the hypothalamic cell line, 4B, which expresses PRL receptors, and in primary hypothalamic neuronal cultures. Using reporter gene assays in 4B cells, or quantitative RT-PCR for primary transcript in hypothalamic cell cultures, PRL potentiated forskolin-stimulated CRH transcription through activation of the ERK/MAPK pathway. The effect of PRL in hypothalamic cell cultures was unaffected by tetrodotoxin, suggesting a direct effect on CRH neurons. The data show that PRL activates the ERK/MAPK pathway and facilitates CRH transcription in CRH neurons, suggesting that the inhibitory effect of PRL on hypothalamo-pituitary-adrenal axis activity reported in vivo is indirect and probably mediated through modulation of afferent pathways to the PVN. In addition, the prominent stimulatory action of PRL on the ERK/MAPK pathway in the hypothalamic PVN and supraoptic nucleus is likely to mediate neuroplasticity of the neuroendocrine system during lactation.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Alessio Malfanti ◽  
Giuseppina Catania ◽  
Quentin Degros ◽  
Mingchao Wang ◽  
Mathilde Bausart ◽  
...  

Glioblastoma is an unmet clinical need. Local treatment strategies offer advantages, such as the possibility to bypass the blood–brain barrier, achieving high drug concentrations at the glioblastoma site, and consequently reducing systemic toxicity. In this study, we evaluated the feasibility of using hyaluronic acid (HA) for the local treatment of glioblastoma. HA was conjugated to doxorubicin (DOX) with distinct bio-responsive linkers (direct amide conjugation HA-NH-DOX), direct hydrazone conjugation (HA-Hz-DOX), and adipic hydrazone (HA-AdpHz-DOX). All HA-DOX conjugates displayed a small size (less than 30 nm), suitable for brain diffusion. HA-Hz-DOX showed the best performance in killing GBM cells in both 2D and 3D in vitro models and displayed superior activity in a subcutaneous GL261 tumor model in vivo compared to free DOX and other HA-DOX conjugates. Altogether, these results demonstrate the feasibility of HA as a polymeric platform for the local treatment of glioblastoma and the importance of rationally designing conjugates.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1366 ◽  
Author(s):  
Yakavets ◽  
Millard ◽  
Lamy ◽  
Francois ◽  
Scheglmann ◽  
...  

The balance between the amount of drug delivered to tumor tissue and the homogeneity of its distribution is a challenge in the efficient delivery of photosensitizers (PSs) in photodynamic therapy (PDT) of cancer. To date, many efforts have been made using various nanomaterials to efficiently deliver temoporfin (mTHPC), one of the most potent photosensitizers. The present study aimed to develop double-loaded matryoshka-type hybrid nanoparticles encapsulating mTHPC/cyclodextrin inclusion complexes in mTHPC-loaded liposomes. This system was expected to improve the transport of mTHPC to target tissues and to strengthen its accumulation in the tumor tissue. Double-loaded hybrid nanoparticles (DL-DCL) were prepared, characterized, and tested in 2D and 3D in vitro models and in xenografted mice in vivo. Our studies indicated that DL-DCL provided deep penetration of mTHPC into the multicellular tumor spheroids via cyclodextrin nanoshuttles once the liposomes had been destabilized by serum proteins. Unexpectedly, we observed similar PDT efficiency in xenografted HT29 tumors for liposomal mTHPC formulation (Foslip®) and DL-DCL.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Mariusz Dziadas ◽  
Adam Junka ◽  
Henryk Jeleń

Eugenyl-β-D-glucopyranoside, also referred to as Citrusin C, is a natural glucoside found among others in cloves, basil and cinnamon plants. Eugenol in a form of free aglycone is used in perfumeries, flavourings, essential oils and in medicinal products. Synthetic Citrusin C was incubated with human saliva in several in vitro models together with substrate-specific enzyme and antibiotics (clindamycin, ciprofloxacin, amoxicillin trihydrate and potassium clavulanate). Citrusin C was detected using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Citrusin C was completely degraded only when incubated with substrate-specific A. niger glucosidase E.C 3.2.1.21 (control sample) and when incubated with human saliva (tested sample). The addition of antibiotics to the above-described experimental setting, stopped Citrusin C degradation, indicating microbiologic origin of hydrolysis observed. Our results demonstrate that Citrusin C is subjected to complete degradation by salivary/oral cavity microorganisms. Extrapolation of our results allows to state that in the human oral cavity, virtually all β-D-glucosides would follow this type of hydrolysis. Additionally, a new method was developed for an in vivo rapid test of glucosidase activity in the human mouth on the tongue using fluorescein-di-β-D-glucoside as substrate. The results presented in this study serve as a proof of concept for the hypothesis that microbial hydrolysis path of β-D-glucosides begins immediately in the human mouth and releases the aglycone directly into the gastrointestinal tract.


1988 ◽  
Vol 16 (1) ◽  
pp. 32-37
Author(s):  
Margherita Ferro ◽  
Anna Maria Bassi ◽  
Giorgio Nanni

Two hepatoma cell cultures were examined as in vitro models to be used in genotoxicity and cytotoxicity tests without the addition of bioactivating enzymes. The MH1C1, and HTC hepatoma lines were used in this study to establish their sensitivity to a number of xenobiotics, namely, cyclophosphamide (CP), the classical positive control in bioactivation tests; benzaldehyde (BA), a short-chain aldehyde; and 4-hydroxynonenal (HNE), a major toxic end-product of the peroxidative degradation of cell membrane lipids. As a first approach, we compared the following cytotoxicity tests: release of lactate dehydrogenase (LDH), and colony formation efficiency (CF). Colony-forming cells were exposed to the drugs according to different procedures, before or after the anchorage phase. The leakage of LDH into the medium following exposure of both cell lines to HNE, CP and BA for up to 24 hours was found not to be a good index of cytotoxicity. A better indicator of cytotoxicity was CF, as evaluated by exposure of the cells 24 hours after seeding. The effects were detectable at very low concentrations, corresponding to 10, 90 and 100μM for HNE, CP and BA, respectively. The impairment of CF efficiency was dose-dependent and time-dependent, and several differences between the two cell lines were observed.


Sign in / Sign up

Export Citation Format

Share Document