scholarly journals Interleukin 35 Activates Intratumor Neovascularization Via Enhanced Secretion of FGF2 in Hepatocellular Carcinoma Through The Recruitment of Neutrophils, and Blocking it Could Facilitate The Efficacy of The PD-1 Antibody

Author(s):  
Wei Gan ◽  
Mei-Xia Zhang ◽  
Jin-Long Huang ◽  
Pei-Yun Zhou ◽  
Cheng Zhou ◽  
...  

Abstract Background: Recently, more and more treatment strategies for Hepatocellular carcinoma (HCC) have emerged, but the therapeutic effect is still not satisfactory. This study is aimed to explore the mechanism of Interleukin 35 (IL-35) in promoting the progression of liver cancer and to explore the application value of IL-35 in the treatment of HCC.Methods: We used clinical tissue microarray (TMA) immunohistochemistry (IHC) to explore the prognostic value of IL-35 expression in patients with HCC. The effect of IL-35 on the function of HCC was explored by functional experiments including wound-healing assay, transwell, cell counting kit-8, cell adhesion assay and endothelial tube formation assay in vitro and mouse xenografts in vivo. And flow cytometry was used to study the effect of IL-35 on infiltrating immune cells in tumor. The molecular mechanism of the function of IL-35 on the progression of HCC was explored by sequencing, ELISA, WB, PCR and other technical means. Finally, through in vivo tumor animal experiments to explore the value of anti-IL-35 antibody and combined with anti-PD-1 antibody in the treatment of liver cancer.Results: High expression of IL-35 in patients with HCC were identified to be associated with poor prognosis. And we have found that IL-35 facilitated tumor progression by affecting neutrophil infiltration, angiogenesis, and CD8+ T-cell infiltration in a mouse model. Additionally, on the one hand C-C motif chemokine ligand 3 (CCL3) has been found to be a key factor mediating the recruitment of neutrophils by IL-35, on the other hand fibroblast growth factor 2 (FGF2) secreting by neutrophil when stimulated by IL-35 was also found to be the core cytokine to promote intratumoral angiogenesis. And IL-35 was also discovered to facilitated the adhesion of tumor to endothelial cells, with neutrophils further enhancing this effect in vitro and vivo. More important, anti-IL-35 antibody was found to be a valid treatment for HCC in xenograft tumor model, and it could give full play to the curative effect of 1:1>2 when combination therapy with PD-1 antibody.Conclusion: Our data show that the expression of IL-35 in patients with HCC is an important tumor promoting factor. The application of anti-IL-35 antibody and treatment combined anti-IL-35 antibody with anti-PD-1 antibody have potential therapeutic value in the treatment of liver cancer.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qifan Zhang ◽  
Yunbin Zhang ◽  
Shibo Sun ◽  
Kai Wang ◽  
Jianping Qian ◽  
...  

AbstractHepatocellular carcinoma (HCC) has been extensively studied as one of the most aggressive tumors worldwide. However, its mortality rate remains high due to ideal diagnosis and treatment strategies. Uncovering novel genes with prognostic significance would shed light on improving the HCC patient’s outcome. In our study, we applied data-independent acquisition (DIA) quantitative proteomics to investigate the expression landscape of 24 paired HCC patients. A total of 1029 differentially expressed proteins (DEPs) were screened. Then, we compared DEPs in our cohort with the differentially expressed genes (DEGs) in The Cancer Genome Atlas, and investigated their prognostic significance, and found 183 prognosis-related genes (PRGs). By conducting protein–protein interaction topological analysis, we identified four subnetworks with prognostic significance. Acyl-CoA oxidase 2 (ACOX2) is a novel gene in subnetwork1, encodes a peroxisomal enzyme, and its function in HCC was investigated in vivo and in vitro. The lower expression of ACOX2 was validated by real-time quantitative PCR, immunohistochemistry, and Western blot. Cell Counting Kit-8 assay, wound healing, and transwell migration assay were applied to evaluate the impact of ACOX2 overexpression on the proliferation and migration abilities in two liver cancer cell lines. ACOX2 overexpression, using a subcutaneous xenograft tumor model, indicated a tumor suppressor role in HCC. To uncover the underlying mechanism, gene set enrichment analysis was conducted, and peroxisome proliferator-activated receptor-α (PPARα) was proposed to be a potential target. In conclusion, we demonstrated a PRG ACOX2, and its overexpression reduced the proliferation and metastasis of liver cancer in vitro and in vivo through PPARα pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiao Jin ◽  
Hao Hu ◽  
Siqi Yan ◽  
Long Jin ◽  
Yuliang Pan ◽  
...  

BackgroundWith the development of radiotherapy technology, radiotherapy has been increasingly used to treat primary hepatocellular carcinoma (HCC). However, due to radioresistance and the intolerance of the adjacent organs to radiation, the effects of radiotherapy are often unsatisfactory. Therefore, it is necessary to study radiosensitization in HCC.MethodA microarray was used to analyze the genes that were significantly associated with radiosensitivity. HCC cells, HepG2 and MHCC97H, were subjected to radiation in vitro. Real-time PCR was performed to determine MIR22HG (microRNA22 host gene) and miR-22-5p expression levels. Western blotting was performed to determine histone expression levels. A histone deacetylase (HDAC) whole cell assay was used to determine the activity of HDAC2. MTT, colony formation, 5-ethynyl-2′-deoxyuridine, and wound healing assays were performed to examine the function of MIR22HG and miR-22-5p in cellular radiosensitivity. Chromatin immunoprecipitation-PCR was used to confirm that HDAC2 affects the acetylation level of the MIR22HG promoter region. Finally, animal experiments were performed to demonstrate the in vivo effect of MIR22HG on the radiosensitivity of hepatoma.ResultsIrradiation can up-regulate MIR22HG expression and down-regulate HDAC2 expression. Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region and up-regulates MIR22HG expression. MIR22HG can increase radiosensitivity via miR-22-5p in HCC.ConclusionInhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region, thereby up-regulating the expression of MIR22HG and promoting the production of miR-22-5p, and ultimately increasing the sensitivity of liver cancer radiotherapy.


2020 ◽  
Vol 168 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Yuepei Zou ◽  
Zhonghua Sun ◽  
Shuangming Sun

Abstract Long non-coding RNA (lnc) HCG18 has been reported to contribute progression of a variety of tumours. However, its roles in hepatocellular carcinoma (HCC) remains unknown. In the current study, we intended to uncover the biological functions of HCG18 in HCC. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of HCG18, microRNA-214-3p (miR-214-3p) and centromere protein M (CENPM) messenger RNA (mRNA). The role of HCG18 in the growth and migration were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay and flow cytometry in vitro and animal experiments in vivo. The results showed that HCG18 was highly expressed in HCC tissues. HCG18 silencing inhibited the proliferation and migration while induced the apoptosis of HCC cells. Besides, miR-214-3p was down-regulated in HCC cells. Further experiments revealed that miR-214-3p could directly bind to HCG18 and exerted an anti-tumour role to counteracted siHCG18-1-mediated influence in HCC cells. Moreover, miR-214-3p could directly interact with CENPM mRNA and down-regulating the expression of CENPM. While HCG18 could up-regulate the expression of CENPM through acting as a sponge of miR-214-3p. Therefore, those results suggested HCG18 functioned as an oncogene to promote the proliferation and migration of HCC cells via miR-214-3p/CENPM axis.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yue-Feng Sun ◽  
Hong-Li Wu ◽  
Rui-Fang Shi ◽  
Lin Chen ◽  
Chao Meng

Liver cancer is thought as the most common human malignancy worldwide, and hepatocellular carcinoma (HCC) accounts for nearly 90% liver cancer. Due to its poor early diagnosis and limited treatment, HCC has therefore become the most lethal malignant cancers in the world. Recently, molecular targeted therapies showed great promise in the treatment of HCC, and novel molecular therapeutic targets is urgently needed. KIF15 is a microtubule-dependent motor protein involved in multiple cell processes, such as cell division. Additionally, KIF15 has been reported to participate in the growth of various types of tumors; however, the relation between KIF15 and HCC is unclear. Herein, our study investigated the possible role of KIF15 on the progression of HCC and found that KIF15 has high expression in tumor samples from HCC patients. KIF15 could play a critical role in the regulation of cell proliferation of HCC, which was proved by in vitro and in vivo assays. In conclusion, this study confirmed that KIF15 could be a novel therapeutic target for the treatment of HCC.


2017 ◽  
Vol 44 (1) ◽  
pp. 255-266 ◽  
Author(s):  
Jinjin Liu ◽  
Jun Rao ◽  
Xuming Lou ◽  
Jian Zhai ◽  
Zhenhua Ni ◽  
...  

Background/Aims: The tripartite motif containing (TRIM) family plays crucial roles in tumor development and progression. However, little is known about the function and mechanism of TRIM11 in hepatocellular carcinoma (HCC). Methods: The expression levels of TRIM11 were examined by real-time PCR, Western blot and Immunohistochemical (IHC) staining. TRIM11 knockdown cells were produced by lentivirus infection, and functional assays, such as MTT, colony formation assay, migration and invasion assays and a xenograft tumor model were used to investigate the role of TRIM11 in HCC. We also determined the effect of TRIM11 on p53 signaling and its downstream molecules. Results: We found that TRIM11 mRNA and protein levels were significantly increased in HCC tissues as compared with normal tissues; increased levels correlated with poor patient survival. By loss- and gain-of-function investigations, knockdown of TRIM11 suppressed cell proliferation, migration, invasion in vitro and tumor growth in vivo. Moreover, TRIM11 negatively regulated p53 expression. Knockdown of p53 abrogated the in vitro and in vivo biological functions of TRIM11 shRNA in HCC cells. Conclusions: These data show that TRIM11 exerts its oncogenic effect in HCC by downregulating p53 both in vitro and in vivo. Our data provide new insights into the pathogenesis of HCC and indicate that TRIM11 may serve as a new therapeutic target for HCC treatment.


2016 ◽  
Vol 29 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Pei-Hao Wen ◽  
Dong-Yu Wang ◽  
Jia-Kai Zhang ◽  
Zhi-Hui Wang ◽  
Jie Pan ◽  
...  

Kruppel-like factor 6 (KLF6) as a novel tumor suppressive gene participates in multiple biological behaviors and plays an important role in regulating tumor cell growth and invasion. However, the functions of KLF6 in hepatocellular carcinoma (HCC) remain poorly understood. The expression level of KLF6 was examined by immunohistochemical assay in human HCC tissues, and KLF6-overexpressed HCC cells (SMCC-7721 and HepG2) were used for evaluating cell proliferation and invasion by MTT and Transwell assays. A subcutaneous HCC tumor model was established for assessing tumor growth in vivo. Our results showed that the expression of KLF6 was significantly downregulated in HCC tissues compared with the adjacent non-cancerous tissues (50.0% vs. 72.0%, P = 0.034) and negatively associated with the lymph-vascular space invasion (LVSI) in HCC patients ( P = 0.003). Furthermore, overexpression of KLF6 reduced cell proliferation and weakened the cell invasive potential followed with the decreased expression of PCNA and MMP-9 in HCC cells. The in vivo experiment indicated that KLF6 overexpression suppressed the xenograft tumor growth. Therefore, our findings show that KLF6 suppresses growth and invasion of HCC cells in vitro and in vivo, suggesting a tumor suppressive function in HCC and provides the potential therapeutic target for the treatment of HCC.


Author(s):  
Min-Min Yu ◽  
Gen-ju Wang ◽  
Kai-Hua Wu ◽  
Song-Lin Xue ◽  
Li- Li Ju ◽  
...  

Objective: In this study, we aimed to investigate the function of microRNA-373-3p (miR-373-3p) in the pathogenesis of cervical cancer. Methods: Human and mouse cervical cancer cell lines were transfected with miR-373-3p mimic and inhibitor. Cell proliferation and viability were evaluated with Cell Counting Kit-8 (CCK-8) assay and Lactate Dehydrogenase (LDH) assay, respectively. The AKT1-targeting role of miR-373-3p was analyzed by qPCR and Western blot. Finally, a mouse xenograft cervical tumor model was adopted to study the in vivo effect of miR-373-3p on tumor growth and the expression of AKT1. Results: Over-expression of miR-373-3p significantly reduced the proliferation of cervical carcinoma cell line in vitro. In addition, miR-373-3p overexpression also inhibited cervical cancer growth in tumor-bearing mice. Mechanistically, we found that AKT1 gene can be targeted by miR-373-3p. MiR-373-3p mimic decreased the mRNA and protein expression of AKT1, while the miR-373-3p inhibitor increased the level of AKT1 in cervical cancer cells. AKT1 overexpression rescued the proliferation of cervical cancer cells transfected with miR-373-3p. Conclusion: MiR-373-3p can serve as a novel anti-tumor microRNA in cervical cancer by targeting AKT1.


2021 ◽  
Author(s):  
Ying Xu ◽  
Hu Tian ◽  
Chao Guang Luan ◽  
Kai Sun ◽  
peng Jin Bao ◽  
...  

Abstract Background: Hepatocellular carcinoma(HCC) in China is considered as a familiar malignant tumor with poor prognosis, high metastasis and disease relapse. Telocytes(TCs) have been verified to participate in progresses of tumorigenesis, invasions and migrations by secreting functional proteins and transmitting cell-to-cell information. Extracellular signal-regulared protein kinase(ERK) signal pathway is a vital mechanism driving cell proliferation, metastasis and apoptosis, but whether this molecular signaling mechanism contributes to matrix metalloproteinase-9(MMP) expression of TCs remains unclear. Methods: Telocytes and MMP9 expression in the liver cancer tissues are measured by immunohistochemistry assay, Westen blot assay and RT-PCR technique, meanwhile primary telocytes from liver para-cancer tissues are cultured in vitro. To demonstrate the function of telocytes for hepatocellular carcinoma, the metastatic cancer animal model is established by three typs of liver cancer cell-lines in vivo. Results: In our study, we elucidate that TCs in the para-cancer tissue can promote the metastasis of HCC cells by MMP-9 expression, in vitro and in vivo. PDGF derived from HCC cells has a capacity to activate Ras/ERK signaling pathway of TC as a result of accelerating MMP-9 expression, but it’s no significant for proliferative potential and apoptotic rate of TCs. While tyrosine kinase inhibitors and miR-942-3p suppress MMP-9 expression to make loss functions of TCs. Various mutations of TCs are also tested and single nucleotide polymorphisms of MMP-9 may be the potentially molecular mechanism of increasing protein expression in the invasive process of HCC. Conclusion: Our results demonstrate two potential mechanisms between HCC cells and TCs, suggesting that TC is a novel marker and target on deciphering reasons of cancer metastasis.


2020 ◽  
Author(s):  
Weidong Shi ◽  
Lanyun Feng ◽  
Shu Dong ◽  
Zhouyu Ning ◽  
Yongqiang Hua ◽  
...  

Abstract BACKGROUND: Heat shot protein 90 (HSP90) AA1 functions as an onco-protein to regulate the assembly, manipulation, folding and degradation of its client proteins, including c-MYC. However, the mechanisms underlying the regulation of HSP90AA1 are poorly understood.METHODS: Transcriptome RNA-sequencing data of Liver hepatocellular carcinoma (LIHC) samples were used to detect the mRNA expression of FBXL6. Immunoprecipitation/Mass Spectrum (IP/MS) method was used to identify the interacting proteins of FBXL6. The co-immunoprecipitation assay was used to determine the interaction between FBXL6 and HSP90AA1. The in vivo ubiquitination assay was performed to determine the regulation of HSP90AA1 by FBXL6. Luciferase reporter and chromatin immunoprecipitation assays were used to determine the transcriptional regulation of FBXL6 by c-MYC. Cell counting and colony formation assays were implemented to detect the biological effects of FBXL6 on the growth of HCC cells in vitro. The effect of FBXL6 on HCC tumor growth in vivo was studied in a tumor xenograft model in mice. RESULTS: Here, we identified the orphan F-box protein FBXL6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin ligase for HSP90AA1. FBXL6 promoted K63-dependent ubiquitination of HSP90AA1 to stabilize it. Through analysis of TCGA dataset, we found that FBXL6 was significantly increased in liver cancer tissues and positively correlated with c-MYC pathway. FBXL6 accumulation in liver cancers causes the stabilization and activation of c-MYC by preventing HSP90AA1 degradation. Activated c-MYC, which in turn directly bound to the promoter region of FBXL6 to induce its mRNA expression.CONCLUSION: Collectively, our data revealed an unknown FBXL6-HSP90AA1-c-MYC axis which might contribute to the oncogenesis of liver cancer, and we propose that inhibition of FBXL6 might represent an effective therapeutic strategy for liver cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document