scholarly journals Characterization and Direct Modulation of a Multi-Section PIC Suited for Short Reach Optical Communication Systems

Photonics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 55
Author(s):  
Mohab Hammad ◽  
Aleksandra Kaszubowska-Anandarajah ◽  
M. Pascual ◽  
Pascal Landais ◽  
Prajwal Lakshmijayasimha ◽  
...  

A multi-section active photonic integrated circuit (PIC) is characterized in detail to gauge its suitability as a transmitter for short reach applications. The PIC is 1.5 mm long and consists of two lasers integrated in a master-slave configuration, which enables optical injection locking (OIL) of the slave laser. The beneficial impact of the injection is characterized by static and dynamic measurements. The results show a reduction of the optical linewidth from 8 MHz to 2 MHz, a relative intensity noise (RIN) value as low as −154.3 dB/Hz and a 45% improvement of the slave laser modulation bandwidth from 9.5 GHz to 14 GHz. This frequency response enhancement allows the direct modulation of the slave gain section at a data rate of 10.7 Gb/s and an error-free transmission over 25 km of standard single-mode fiber (SSMF). Transmission performance of the injected case shows a 2 dB improvement in the minimum optical power required to achieve a bit error rate of 3.8×10−3 (hard decision forward error correction limit). These results demonstrate that the multi-section PIC can serve as an attractive cost-efficient transmitter in a wide variety of low-cost short-reach data communication applications.

2021 ◽  
Author(s):  
Yingge Chen ◽  
Leonardo Silvestri ◽  
Xinyue Lei ◽  
François Ladouceur

Abstract We present an optically powered, intrinsically safe gas monitoring system to measure four essential environmental gases (CH4, CO2, CO and O2), together with ambient temperature and pressure, for underground mines. The system is based on three key technologies developed at UNSW: (1) power-over-fibre (PoF) at 1,550 nm using a single industry-standard, low-cost single-mode fibre (SMF) for both power delivery and information transmission, (2) liquid-crystal-based optical transducers for optical telemetry, and (3) ultra-low power consumption design of all electronics. Together, this approach allows each gas monitoring station to operate with less than 150 mW of optical power, meeting the intrinsic safety requirements specified by the IEC60079-28 standard. A 2-month field trial at BMA’s Broadmeadow underground mine proved the cabling compatibility to the mine’s existing optical network and the stability of the system performance. Compared with conventional electrically powered gas sensors, this technology bypasses the usual roadblocks of underground gas monitoring where electrical power is either unsafe or unavailable. Furthermore, using one fibre for both power delivery and communication enables longer distance coverage, reduces optical cabling and increases multiplexing possibilities and data throughput for better awareness of underground environment.


Research in millimeter-wave dielectric waveguides is recently experiencing high interest in efficient data communication. Generally, channel interconnect remains a challenge for high- speed links design in satellite communication. This paper presents an analysis of Polytetrafluoroethylene (PTFE) interconnect at Ku band owing to its low-cost and efficient throughput. The effect of varying PTFE properties was examined based on the wavelength, propagation constant and attenuation, in other to advise on coating and energy escape outside the Polymer Microwave Fiber (PMF).


Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 93
Author(s):  
Andreas Hänsel ◽  
Abubakar Isa Adamu ◽  
Christos Markos ◽  
Anders Feilberg ◽  
Ole Bang ◽  
...  

We present a fully integrated optical ammonia sensor, based on a photonic integrated circuit (PIC) with a tunable laser source and a hollow-core fiber (HCF) as gas interaction cell. The PIC also contains a photodetector that can be used to record the absorption signal with the same device. The sensor targets an ammonia absorption line at 1522.45 nm, which can be reached with indium phosphide-based telecom compatible PICs. A 1.65-m long HCF is connected on both ends to a single-mode fiber (SMF) with a mechanical splice that allows filling and purging of the fiber within a few minutes. We show the detection of a 5% ammonia gas concentration, as a proof of principle of our sensor and we show the potential to even detect much lower concentrations. This work paves the way towards a low-cost, integrated and portable gas sensor with potential applications in environmental gas sensing.


2021 ◽  
Vol 11 (8) ◽  
pp. 3406
Author(s):  
Jinlong Wei ◽  
Cedric Lam ◽  
Ji Zhou ◽  
Ivan Aldaya ◽  
Elias Giacoumidis ◽  
...  

A novel low-cost and energy-efficient approach for reaching 40 Gb/s signals is proposed for cost-sensitive optical access networks. Our proposed design is constituted of an innovative low-complex high-performance digital signal processing (DSP) architecture for pulse amplitude modulation (PAM-4), reuses existing commercial cost-effective 10-G components and eliminates the need of a power-hungry radio frequency (RF) component in the transmitter. Using a multi-functional 17-tap reconfigurable adaptive Volterra-based nonlinear equalizer with noise suppression, significant improvement in receiver optical power sensitivity is achieved. Results show that over 30 km of single-mode fiber (SMF) a link power budget of 33 dB is feasible at a bit-error-rate (BER) threshold of 10−3.


Author(s):  
D. A. Ivanov ◽  
V. I. Nefedov

One of the main directions in the development of optical communication systems is associated with the use of optical fiber (ОF) for data reception and transmission. Therefore, manufacturers began to pay special attention to the creation of new brands of OF, improving their optical and operational characteristics. This makes it possible to improve existing optical fiber components that use OF as an active medium. The most widely used are two-wavelength 1 × 2 WDM multiplexers/demultiplexers designed to separate and combine optical carriers with wavelengths of 1310 and 1550 nm, corresponding to the second and third transparency windows of quartz OF. It should be noted that multiplexers and demultiplexers are the same optical devices, which are spectrally selective splitters. Such devices are distinguished by a sufficiently high level of optical characteristics at a relatively low cost of products. However, an analysis of the multiplexers produced in recent years shows that the characteristics of these devices do not sufficiently correspond to the set of modern requirements imposed by most system developers, in particular on permissible values of external influencing factors, insertion loss and the value of optical isolation of channels. Therefore, the development and research of WDM multiplexers with improved optical characteristics is relevant. One of the possible ways of optimizing such devices using new types of OF with resistance to bending losses, of which WDM multiplexers could be made. In this paper, we consider the possibilities of realizing fused single-mode multiplexers/demultiplexers based on combined fiber structures. The technology and equipment for the manufacture of these devices are presented. The optical characteristics of experimental samples of WDM multiplexers are investigated. The results of testing for the effect of temperature are given.


2018 ◽  
Vol 7 (2.17) ◽  
pp. 13
Author(s):  
P Venu Madhav ◽  
Dr M SivaGanga Prasad

Objectives: Efficient antenna design for use in communication systems is altering the face of the antenna modeling. The ever-increasing demand for portable and efficient antennas is making researchers to develop innovative models [1] using advanced antenna modeling tools that comply with industrial needs and standards.  Methods/Statistical Analysis: Antennas with lower operating frequencies have the major constraints on its size, efficiency and gain. Study on matching techniques, feeding techniques was also to be considered.Findings: Micro strip patch antennas offers considerable amount of radiation, low cost when fabricated on FR4, light weight and are conformable to suite any application. This paper projects the design, simulation and testing of a dual octagonal patch, the topology algorithm [3] is used to optimize the size and shape of the patch where octagons are spaced in the form of an array to address optimization on size and fits into wireless applications. Application/Improvements: The proposed model is tested in the standard antenna test bench comprising of microwave integrated circuit analyzer receiver MIC10kit and found to operate at a resonant frequency of 1.8 GHz with good radiation characteristics.  


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1697
Author(s):  
Xicong Li ◽  
Zabih Ghassemlooy ◽  
Stanislav Zvánovec ◽  
Paul Anthony Haigh

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.


Sign in / Sign up

Export Citation Format

Share Document