scholarly journals Integrative Pre-Breeding for Biotic Resistance in Forest Trees

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2022 ◽  
Author(s):  
Melisa Guevara-Escudero ◽  
Angy N. Osorio ◽  
Andrés J. Cortés

Climate change is unleashing novel biotic antagonistic interactions for forest trees that may jeopardize populations’ persistence. Therefore, this review article envisions highlighting major opportunities from ecological evolutionary genomics to assist the identification, conservation, and breeding of biotic resistance in forest tree species. Specifically, we first discuss how assessing the genomic architecture of biotic stress resistance enables us to recognize a more polygenic nature for a trait typically regarded Mendelian, an expectation from the Fisherian runaway pathogen–host concerted arms-race evolutionary model. Secondly, we outline innovative pipelines to capture and harness natural tree pre-adaptations to biotic stresses by merging tools from the ecology, phylo-geography, and omnigenetics fields within a predictive breeding platform. Promoting integrative ecological genomic studies promises a better understanding of antagonistic co-evolutionary interactions, as well as more efficient breeding utilization of resistant phenotypes.

2021 ◽  
Author(s):  
Stella White ◽  
Ribka Sionita Tarigan ◽  
Anak Agung Ketut Aryawan ◽  
Edgar Turner ◽  
Sarah Luke ◽  
...  

<p>Oil palm (OP) growers are under pressure to reduce their environmental impact. Ecosystem function and biodiversity are at the forefront of the issue, but what effect do changes in management practices have on greenhouse gas (GHG) fluxes from plantations? </p><p>The Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project is a collaboration between the University of Cambridge and the SMART Research Institute in Riau, Indonesia. This project explores the ecological changes resulting from the restoration of riparian margins between plantations and watercourses. Four management strategies were applied on both sides of a river to create 50m riparian buffers, 400m in length: (1) A control treatment of no restoration, the removal of mature OP and replanting of young OP to the river margin; (2) Little to no agricultural management of mature OP; (3) Clearance of mature OP and enrichment planting with native forest trees; (4) Little or no agricultural management of mature OP and enrichment planting with native forest trees. Here we present a specific objective to investigate the effect of riparian restoration – and related changes in soil characteristics, structure and vegetation cover – on fluxes of N<sub>2</sub>O, CH<sub>4</sub> and CO<sub>2</sub> from mineral soils.</p><p>The experimental site began as a mature OP plantation, with monthly background measurements taken between January and April 2019. Palms were felled in April 2019 and monthly sampling was resumed when replanting and restoration began, in October 2019. We measured GHGs using static chambers; 6 in each riparian treatment and 16 in the actual OP plantation, 40 chambers in total. Samples were analysed using GC-FID/µECD.</p><p>Background measurements before felling showed high variability, but indicated no difference between the four experimental plots and the rest of the plantation. Fluxes measured following replanting were also highly variable, with no significant differences observed between treatments. N<sub>2</sub>O fluxes were relatively low before felling as the mature palms were no longer fertilised. Higher emissions were seen in the disturbed immature OP and forest tree treatments following replanting. Though the sites appeared to recover quickly and emission fluxes decreased after a few months, presumably as the soil settled and new vegetation began to grow. CH<sub>4</sub> uptake was seen in the immature OP treatment immediately after replanting. In subsequent months no clear trends of CH<sub>4</sub> uptake or emission were observed, with the greatest variability generally seen in the forest tree treatment. CH<sub>4</sub> emissions increased in October 2020 with the beginning of the rainy season, most notably in mature OP and mature OP with forest tree treatments. Following restoration CO<sub>2</sub> emissions were higher in treatments with established plant communities – mature OP and mature OP with forest trees.</p><p>These results suggest that riparian restoration had no significant effect on GHG fluxes from mineral soils, and would not alter the overall GHG budget of a plantation. If there is no additional GHG burden and riparian restoration results in enhancing biodiversity and ecosystem services as well as improving water quality, it will be a viable management option to improve the environmental impact of an OP plantation.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiyi Yin ◽  
Chun Wang ◽  
Dandan Xiao ◽  
Yanting Liang ◽  
Yanwei Wang

Transgenic technology is increasingly used in forest-tree breeding to overcome the disadvantages of traditional breeding methods, such as a long breeding cycle, complex cultivation environment, and complicated procedures. By introducing exogenous DNA, genes tightly related or contributed to ideal traits—including insect, disease, and herbicide resistance—were transferred into diverse forest trees, and genetically modified (GM) trees including poplars were cultivated. It is beneficial to develop new varieties of GM trees of high quality and promote the genetic improvement of forests. However, the low transformation efficiency has hampered the cultivation of GM trees and the identification of the molecular genetic mechanism in forest trees compared to annual herbaceous plants such as Oryza sativa. In this study, we reviewed advances in transgenic technology of forest trees, including the principles, advantages and disadvantages of diverse genetic transformation methods, and their application for trait improvement. The review provides insight into the establishment and improvement of genetic transformation systems for forest tree species. Challenges and perspectives pertaining to the genetic transformation of forest trees are also discussed.


1939 ◽  
Vol 17c (12) ◽  
pp. 411-444 ◽  
Author(s):  
L. P. V. Johnson

Over 400 hybrids involving 28 North American genera of forest trees are described in tabular form with the object, primarily, of providing useful information for the forest-tree breeder. The genera involved are: Abies, Acer, Aesculus, Alnus, Arbutus, Betula, Carya, Castanea, Catalpa, Cyprus, Crataegus, Cupressus, Gleditsia, Ilex, Juglans, Larix, Magnolia, Picea, Pinus, Platanus, Populus, Quercus, Robinia, Salix, Taxus, Tilia, Tsuga, and Ulmus.


2020 ◽  
pp. PHYTO-08-20-035
Author(s):  
Pauline Hessenauer ◽  
Nicolas Feau ◽  
Upinder Gill ◽  
Benjamin Schwessinger ◽  
Gurcharn S. Brar ◽  
...  

Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.


2019 ◽  
Vol 20 (2) ◽  
pp. 437
Author(s):  
Mariya Tsaneva ◽  
Kristof De Schutter ◽  
Bruno Verstraeten ◽  
Els J.M. Van Damme

Rice (Oryza sativa) is one of the main staple crops worldwide but suffers from important yield losses due to different abiotic and biotic stresses. Analysis of quantitative trait loci (QTL) is a classical genetic method which enables the creation of more resistant cultivars but does not yield information on the genes directly involved or responsible for the desired traits. Lectins are known as proteins with diverse functions in plants. Some of them are abundant proteins in seeds and are considered as storage/defense proteins while other lectins are known as stress-inducible proteins, implicated in stress perception and signal transduction as part of plant innate immunity. We investigated the distribution of lectin sequences in different QTL related to stress tolerance/resistance, morphology, and physiology through mapping of the lectin sequences and QTL regions on the chromosomes and subsequent statistical analysis. Furthermore, the domain structure and evolutionary relationships of the lectins in O. sativa spp. indica and japonica were investigated. Our results revealed that lectin sequences are statistically overrepresented in QTLs for (a)biotic resistance/tolerance as well as in QTLs related to economically important traits such as eating quality and sterility. These findings contribute to the characterization of the QTL sequences and can provide valuable information to the breeders.


2018 ◽  
Vol 22 (5) ◽  
pp. 536-543 ◽  
Author(s):  
A. Zatybekov ◽  
S. Abugalieva ◽  
S. Didorenko ◽  
A. Rsaliyev ◽  
Y. Turuspekov

Soybean (Glycine max(L.) Merr) is an essential food, feed, and technical culture. In Kazakhstan the area under soybean is increasing every year, helping to solve the problem of protein deficiency in human nutrition and animal feeding. One of the main problems of soybean production is fungal diseases causing yields losses of up to 30 %. Modern genomic studies can be applied to facilitate efficient breeding research for improvement of soybean fungal disease tolerance. Therefore, the objective of this genome-wide association study (GWAS) was analysis of a soybean collection consisting of 182 accessions in relation to fungal diseases in the conditions of South East and South Kazakh­stan. Field evaluation of the soybean collection suggested thatFusariumspp. andCercospora sojinaaffected plants in the South region (RIBSP), andSeptoria glycines– in the South East region (KRIAPP). The major objective of the study was identification of QTL associated with resistance to fusarium root rot (FUS), frogeye leaf spot (FLS), and brown spot (BS). GWAS using 4 442 SNP (single nucleotide polymorphism) markers of Illumina iSelect array allowed for identification of fifteen marker trait associations (MTA) resistant to the three diseases at two different stages of growth. Two QTL both for FUS (chromosomes 13 and 17) and BS (chromosomes 14 and 17) were genetically mapped, including one presumably novel QTL for BS (chromo­some 17). Also, five presumably novel QTL for FLS were genetically mapped on chromosomes 2, 7, and 15. The results can be used for improvement of the local breeding projects based on marker-assisted selection approach.          


2021 ◽  
Vol 70 (1) ◽  
pp. 117-136
Author(s):  
M. R. Ahuja

Abstract Woody plants have been cultured in vitro since the 1930s. After that time much progress has been made in the culture of tissues, organs, cells, and protoplasts in tree species. Tree biotechnology has been making strides in clonal propagation by organogenesis and somatic embryogenesis. These regeneration studies have paved the way for gene transfer in forest trees. Transgenics from a number of forest tree species carrying a variety of recombinant genes that code for herbicide tolerance, pest resistance, lignin modification, increased woody bio-mass, and flowering control have been produced by Agrobacterium-mediated and biolistic methods, and some of them are undergoing confined field trials. Although relatively stable transgenic clones have been produced by genetic transformation in trees using organogenesis or somatic embryogenesis, there were also unintended unstable genetic events. In order to overcome the problems of randomness of transgene integration and instability reported in Agrobacterium-mediated or biolistically transformed plants, site-specific transgene insertion strategies involving clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) platform offer prospects for precise genome editing in plants. Nevertheless, it is important to monitor phenotypic and genetic stability of clonal material, not just under greenhouse conditions, but also under natural field conditions. Genetically modified poplars have been commercialized in China, and eucalypts and loblolly pine are expected to be released for commercial deployment in USA. Clonal forestry and transgenic forestry have to cope with rapid global climate changes in the future. Climate change is impacting species distributions and is a significant threat to biodiversity. Therefore, it is important to deploy Strategies that will assist the survival and evolution of forest tree species facing rapid climate change. Assisted migration (managed relocation) and biotechnological approaches offer prospects for adaptation of forest trees to climate change.


1975 ◽  
Vol 188 (1092) ◽  
pp. 313-326 ◽  

Despite the great importance for forest tree breeding, very limited knowledge is yet available about the breeding systems of forest trees. Where incompatibility has been studied in the hardwoods; patterns have been observed which confirm the general rules detected for other angiosperms. Self- and interspecific incompatibility at the level of pollen tube growth has been reported for example in Betula and Alnus . In Alnus one case of unilateral interspecific incompatibility has been found. Self-incompatibility has, so far, not been reported from the conifers. Inter-specific incompatibility in the form of the arrestment of the pollen tube growth in the nucellus tissue has been observed in Picea and is particularly clear in Pinus crosses between the subgenera and Haploxylon and Diploxylon , but also within the Diploxylon -group. The nature of the incompatibility mechanism is still unknown, but serological differences related to the behaviour in the crosses has been detected in birch and pine pollen. It is suggested that the complex polysaccharidic composition of the cell walls and membranes might form a specific stereochemical basis for the incompatibility reaction. The presence of a combination of self-pollination, polyembryony and genetic load is discussed as an alternative mechanism favouring outbreeding in the Gymnosperms.


2013 ◽  
Vol 59 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Luting Song ◽  
Wen Wangs

Abstract Alongside recent advances and booming applications of DNA sequencing technologies, a great number of complete genome sequences for animal species are available to researchers. Hundreds of animals have been involved in whole genome sequencing, and at least 87 non-human animal species’ complete or draft genome sequences have been published since 1998. Based on these technological advances and the subsequent accumulation of large quantity of genomic data, evolutionary genomics has become one of the most rapidly advancing disciplines in biology. Scientists now can perform a number of comparative and evolutionary genomic studies for animals, to identify conserved genes or other functional elements among species, genomic elements that confer animals their own specific characteristics and new phenotypes for adaptation. This review deals with the current ge-nomic and evolutionary research on non-human animals, and displays a comprehensive landscape of genomes and the evolutionary genomics of non-human animals. It is very helpful to a better understanding of the biology and evolution of the myriad forms within the animal kingdom.


2009 ◽  
Vol 25 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Gregory J. Sharam ◽  
A. R. E. Sinclair ◽  
Roy Turkington ◽  
Aerin L. Jacob

Abstract:Forests are being converted to grasslands and croplands across Africa and natural regeneration of forests is typically poor. In Serengeti National Park, Tanzania, the savanna tree species Acacia polyacantha established in riparian grasslands and forest trees subsequently established within these stands. We examined the conditions for establishment of: (1) A. polyacantha and (2) riparian (non-Acacia) forests. Fire was excluded from three grassland areas for 5 y allowing A. polyacantha to establish during 1999 when dry-season rainfall was high. The seedlings of forest tree species did not establish in grasslands, but were found in large A. polyacantha stands (> 0.3 ha) with reduced grass cover (< 10%), higher cover of herbs (> 80%) and thorny shrubs (> 90%). Seeding survival was high in large stands (0.87 y−1), but declined in artificial canopy gaps due to the ingrowth of grasses (0.21 y−1) and subsequent fires (0.07 y−1). Shrub removal also reduced seedling survival (0.46 y−1) due to browsing by antelope. We propose that: (1) A. polyacantha establishes in pulses perhaps as infrequently as twice per century, and (2) riparian forests in Serengeti have established via facilitation under larger stands where shade excludes grass, and therefore fires and thorny shrubs exclude browsers.


Sign in / Sign up

Export Citation Format

Share Document