scholarly journals The Impact of Climate Change on Forest Development: A Sustainable Approach to Management Models Applied to Mediterranean-Type Climate Regions

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Leonel J. R. Nunes ◽  
Catarina I. R. Meireles ◽  
Carlos J. Pinto Gomes ◽  
Nuno M. C. Almeida Ribeiro

Forest ecosystems are divided into three major groups: boreal, temperate, and tropical. These can be subdivided according to the particularities of each type due to its relative location (littoral, mountain, etc.), climatic conditions, or even geological substrate. Climate change affects each type of forest ecosystem differently. However, it seems to affect temperate forests in Mediterranean-type climate regions more intensely. These regions are located over several continents, with major impacts of increased temperature during summer and decreased precipitation during winter. This situation affects Mediterranean forest ecosystems by increasing the risk of fires, which arise more frequently and are more severe. In addition, the emergence of pests and the spread of invasive species are well-known problems affecting these ecosystems. All of these conditions contribute to losses of productivity and biodiversity. To avoid the destruction of forest resources, and since Mediterranean-type climate regions are considered climate change hot spots with increased vulnerability to disturbances, the implementation of adaptive forest management models could contribute to increasing the resilience of such forests, which could also contribute to mitigating climate change.

2017 ◽  
Vol 11 (2) ◽  
pp. 63-75
Author(s):  
Nedealcov Maria ◽  
Donica Ala ◽  
Brașoveanu Valeriu ◽  
Grigoraș Nicolae ◽  
Deomidova Cristina

Abstract Assessment activity and surveillance of the forests health, held at the global, regional and local level, has continuously developed, culminating in the current period with interdisciplinary and extensive scientific researches, that evaluate the effects of the main factors on forest ecosystems state, in particular, air pollution and climate change. Scientific researches have shown that among trees ecophysiological processes, forest life processes and meteorological parameters there are direct dependences, particularly in the case of trees supply with water during the growing period (May-July), with major influences for critical months (July and August), which have a decisive impact on growth, vitality and production of organic matter in forests. Dry years, from the beginning of the third millennium can lead to a decrease of mesophilic forests area (beech, sessile oak and penduculate oak), which will tend to retreat towards the center of the area (central Europe) in favor of thermophilic forests with pubescent oak. It was determined that a most significant negative impact of climate aridization will feel the forest ecosystems from Southern and central regions of country (conditioned by the mean air temperature (July-August), monthly rainfall (May-August), evapotranspiration and geographic latitude), and less - the Northern part of the country (Forestry Aridity Index calculated for 3 experimental stations revealed variations of this index between 7.8 - 8.3 - in the Central part of country, and 8.4 - 8.6 - for Southern part of country). At the same time the impact of climate change will determine the spatial and temporal dynamics of pests and pathogenic species. The phenomenon of climate aridization was expressed also through the impact of the Microsphaera alphitoides disease, intensity of “mildew” attack being based on the climatic conditions of the study region. Obtained data, for confirmation, were correlated with indications of bioindicators, present in the study region.


2021 ◽  
Vol 18 (1) ◽  
pp. 52-65
Author(s):  
P. N. Mikheev

The article discusses issues related to the impact of climate change on the objects of the oil and gas industry. The main trends in climate change on a global and regional (on the territory of Russian Federation) scale are outlined. Possible approaches to the identification and assessment of climate risks are discussed. The role of climatic risks as physical factors at various stages of development and implementation of oil and gas projects is shown. Based on the example of oil and gas facilities in the Tomsk region, a qualitative assessment of the level of potential risk from a weather and climatic perspective is given. Approaches to creating a risk management and adaptation system to climate change are presented.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


Author(s):  
Ayansola Olatunji Ayandibu ◽  
Makhosazana Faith Vezi-Magigaba

Entrepreneurs in emerging and developing economies face many challenges curtailing their ability to finance and grow their business ventures. Climate change provides new opportunities for entrepreneurs to gain access to finance and contribute toward more climate-resilient economies. The objective of this chapter is to outline the dimensions of entrepreneurial financing that are sensitive to levels of climate change with emphasis on the financial services sector's role in reacting to these changes. An analysis of current extant literature will be explored, and evidence supporting effective entrepreneurial financing will be used to develop a theoretical framework for climate change and entrepreneurial financing to foster a more climatic conditions-sustainable economy. The literature in this chapter indicated the need for establishing the impact of climate change on entrepreneurial financing in the financial services sector in order to provide recommendations that can direct funding more effectively towards climate-resilient activities and a more climatic conditions-sustainable economy.


2020 ◽  
Vol 33 (9) ◽  
pp. 3431-3447
Author(s):  
Tobias Spiegl ◽  
Ulrike Langematz

AbstractSatellite measurements over the last three decades show a gradual decrease in solar output, which can be indicative as a precursor to a modern grand solar minimum (GSM). Using a chemistry–climate model, this study investigates the potential of two GSM scenarios with different magnitude to counteract the climate change by projected anthropogenic greenhouse gas (GHG) emissions through the twenty-first century. To identify regions showing enhanced vulnerability to climate change (hot spots) and to estimate their response to a possible modern GSM, a multidimensional metric is applied that accounts for—in addition to changes in mean quantities—seasonal changes in the variability and occurrence of extreme events. We find that a future GSM in the middle of the twenty-first century would temporarily mitigate the global mean impact of anthropogenic climate change by 10%–23% depending on the GSM scenario. A future GSM would, however, not be able to stop anthropogenic global warming. For the GHG-only scenario, our hot-spot analysis suggests that the midlatitudes show a response to rising GHGs below global average, while in the tropics, climate change hot spots with more frequent extreme hot seasons will develop during the twenty-first century. A GSM would reduce the climate change warming in all regions. The GHG-induced warming in Arctic winter would be dampened in a GSM due to the impact of reduced solar irradiance on Arctic sea ice. However, even an extreme GSM could only mitigate a fraction of the tropical hot-spot pattern (up to 24%) in the long term.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ming Hao Wang ◽  
Jing Ru Wang ◽  
Xiao Wei Zhang ◽  
Ai Ping Zhang ◽  
Shan Sun ◽  
...  

Abstract Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species’ original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.


2019 ◽  
Vol 10 (04) ◽  
pp. 1950013
Author(s):  
CRISTINA CATTANEO ◽  
EMANUELE MASSETTI

This paper analyzes whether migration is an adaptation strategy that households employ to cope with climate in Nigeria. We estimate our model using the cross-sectional variation in climate and long-term migration decisions because we are interested in the average response to long-term climatic conditions. For households that operate farms, we find that the relationship between climate and migration is nonlinear. In particular, climates closer to ideal farming conditions are associated with a higher propensity to migrate, whereas in the least favorable climatic conditions, the propensity to migrate declines. The marginal effect of rainfall and temperature changes on migration varies by season. We estimate the impact of climate change on the number of migrant households in 2031–2060 and 2071–2100, ceteris paribus. With current population levels, climate change generates between 3.6 and 6.3 million additional migrants, most of them being internal. However, these estimates are not statistically significant.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Kleoniki Demertzi ◽  
Dimitris Papadimos ◽  
Vassilis Aschonitis ◽  
Dimitris Papamichail

This study proposes a simplistic model for assessing the hydroclimatic vulnerability of lakes/reservoirs (LRs) that preserve their steady-state conditions based on regulated superficial discharge (Qd) out of the LR drainage basin. The model is a modification of the Bracht-Flyr et al. method that was initially proposed for natural lakes in closed basins with no superficial discharge outside the basin (Qd = 0) and under water-limited environmental conditions {mean annual ratio of potential/reference evapotranspiration (ETo) versus rainfall (P) greater than 1}. In the proposed modified approach, an additional Qd function is included. The modified model is applied using as a case study the Oreastiada Lake, which is located inside the Kastoria basin in Greece. Six years of observed data of P, ETo, Qd, and lake topography were used to calibrate the modified model based on the current conditions. The calibrated model was also used to assess the future lake conditions based on the future climatic projections (mean conditions of 2061-2080) derived by 19 general circulation models (GCMs) for three cases of climate change (three cases of Representative Concentration Pathways: RCP2.6, RCP4.5 and RCP8.5). The modified method can be used as a diagnostic tool in water-limited environments for analyzing the superficial discharge changes of LRs under different climatic conditions and to support the design of new management strategies for mitigating the impact of climate change on (a) flooding conditions, (b) hydroelectric production, (c) irrigation/industrial/domestic use and (d) minimum ecological flows to downstream rivers.


2007 ◽  
Vol 97 (4) ◽  
pp. 369-378 ◽  
Author(s):  
A.E.A. Stephens ◽  
D.J. Kriticos ◽  
A. Leriche

AbstractThe oriental fruit fly,Bactrocera dorsalis(Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access,B. dorsalisand many other fruit fly species are considered major threats to many countries. CLIMEX™ was used to model the potential global distribution ofB. dorsalisunder current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions forB. dorsalisin the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range forB. dorsalisis projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution ofB. dorsalisprojected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution ofB. dorsalisis striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.


Parasitology ◽  
2010 ◽  
Vol 137 (7) ◽  
pp. 1041-1056 ◽  
Author(s):  
N. J. MORLEY

SUMMARYNematodes are common parasites of molluscs but are often overlooked. Both metastrongyloid and rhabditoid species dominate the fauna within land snail and slug populations. Nevertheless, a key characteristic of many laboratory studies is the ability of these terrestrial nematodes to utilize aquatic molluscs as auxiliary hosts. The significance of this to the ecology of the parasite has never been evaluated. There is increasing concern as to the impact of climate change on the epidemiology of many parasitic diseases. In particular, it has been suggested that host switching may increase under the pressure of extreme climatic conditions. It is therefore timely to assess the role that aquatic molluscs may play in transmitting terrestrial nematodes, which include species of medical and veterinary importance such as Angiostrongylus cantonensis, A. vasorum, and Muellerius capillaris. The present review assesses the mechanisms of terrestrial nematode transmission through aquatic molluscs focusing on metastrongyloid and rhabditoid species, the importance of variable susceptibility of molluscan hosts, field studies on natural occurrence within aquatic habitats, and the impact of extreme climatic events (floods and droughts) that may increase in frequency under climate change.


Sign in / Sign up

Export Citation Format

Share Document