DOES HARMFUL CLIMATE INCREASE OR DECREASE MIGRATION? EVIDENCE FROM RURAL HOUSEHOLDS IN NIGERIA

2019 ◽  
Vol 10 (04) ◽  
pp. 1950013
Author(s):  
CRISTINA CATTANEO ◽  
EMANUELE MASSETTI

This paper analyzes whether migration is an adaptation strategy that households employ to cope with climate in Nigeria. We estimate our model using the cross-sectional variation in climate and long-term migration decisions because we are interested in the average response to long-term climatic conditions. For households that operate farms, we find that the relationship between climate and migration is nonlinear. In particular, climates closer to ideal farming conditions are associated with a higher propensity to migrate, whereas in the least favorable climatic conditions, the propensity to migrate declines. The marginal effect of rainfall and temperature changes on migration varies by season. We estimate the impact of climate change on the number of migrant households in 2031–2060 and 2071–2100, ceteris paribus. With current population levels, climate change generates between 3.6 and 6.3 million additional migrants, most of them being internal. However, these estimates are not statistically significant.

2019 ◽  
Vol 43 (6) ◽  
pp. 587-631 ◽  
Author(s):  
Blaise Gnimassoun

Regional integration in Africa is a subject of great interest, but its impact on income has not been studied sufficiently. Using cross-sectional and panel estimations, this article examines the impact of African integration on real per capita income in Africa. Accordingly, we consider intra-African trade and migration flows as quantitative measures reflecting the intensity of regional integration. To address the endogeneity concerns, we use a gravity-based, two-stage least-squares strategy. Our results show that, from a long-term perspective, African integration has not been strong enough to generate a positive, significant, and robust impact on real per capita income in Africa. However, it does appear to be significantly income-enhancing in the short and medium terms but only through intercountry migration. These results are robust to a wide range of specifications.


Author(s):  
Adrienn Széles, Éva Horváth, Attila Vad, Endre Harsányi

Climate change poses a new challenge for maize producers which calls for the re-thinking of each production technological element. Professional nutrient replenishment may represent an alternative for the mitigation of yield decrease caused by climate change by means of improving yield stability from the aspect of global food safety, as well as increasing yield and improving yield quality. In the course of a  six-year (2011-2016) research, under changing climatic conditions we studied how different fertilization methods - 11 different N doses (0-300 kg ha-1) - affect the productivity of maize and protein content of grains.The experiment was carried out in Hungary (47o 33’ N, 21o 26’ E, asl: 111 m) in the long-term experiment of the University of Debrecen.


2021 ◽  
Author(s):  
Dominika Hodáková ◽  
Andrea Zuzulová ◽  
Silvia Cápayová ◽  
Tibor Schlosser

The design of pavement structure is as a set of several activities related to the design of road construction, dimension and model calculations. This includes calculations of load effects, taking into account the properties of the materials, the subgrade conditions, and the climatic conditions. The measurements of climatic conditions in Slovakia were the basis for assessing changes in average daily air temperatures in individual seasons. Since the 19th century we have seen in Slovakia an increase in the average air temperature of 1.5 ° C. Currently, there are scenarios of climate change until 2100. An increase in air temperature is assumed, with an increase in average monthly temperatures of 2.0 to 4.8 °C. In road construction, as well as in other areas of engineering, we must respond to current climate change and also to expected changes. The average annual air temperature and the frost index are the critical climatic characteristics are the main for the design (input parameter) and evaluation of pavement. From the practical side it is possible to use the design maps of average annual air temperature and frost index according to STN 73 6114 from year 1997. In cooperation with the Slovak Hydrometeorological Institute from the long-term monitoring of temperatures, different meteorological characteristics were measured in the current period. From the measurements of twelve professional meteorological stations for the period 1971 to 2020, the dependence between two variables in probability theory is derived. The average annual air temperatures used for prognoses are collected from long-term measurements (fifty years). The design of road constructions and calculations of road construction models, which are in the system design solution (comparative calculations of asphalt pavement- and cement-concrete pavement models), we have also tested road construction materials - especially asphalt mixtures. The results were used to correct the values of input data, design criteria, as well as measures to reduce the impact of changes in climate conditions.


2021 ◽  
pp. 125-131
Author(s):  
Frederic Stachurski ◽  
Nathalie Boulanger ◽  
Adrien Blisnick ◽  
Laurence Vial ◽  
Sarah Bonnet

Abstract The effect of climate on the evolution of tick populations remains difficult to disentangle from other possible causes and undoubtedly varies depending on the region concerned and local tick species. Large-scale, long-term monitoring is, therefore, necessary to accurately assess climatic impact on tick populations. Climate change can alter tick populations, either indirectly by affecting vertebrate host populations or directly by increasing or decreasing their numbers. These ectoparasites, and in particular hard ticks, spend almost their entire life cycle in the external environment, thus climatic conditions influence their activity, viability and distribution. This expert opinion aims to illustrate the impact of climate change, and its association with other variables, on the distribution and abundance of tick populations in Europe using Ixodes ricinus and Hyalomma marginatum as typical examples of endemic and invasive species, respectively.


2016 ◽  
Vol 3 (1) ◽  
pp. 27-35
Author(s):  
Muntaha Rakib ◽  
Shah Mohammad Hamza Anwar

The lack of sufficient knowledge about climate changes and the impact on agricultural production is an impediment to long term sustainable agriculture in most developing countries, including Bangladesh. This paper presents the results of an investigation to determine perception of farmers about changes in climate in Bangladesh. The study finds the determinants of farmers’ perception on climate variability in different specifications of household characteristics. The sample was adult farmers with at least 20 years of farming experience in the area. Data was collected on perceptions about temperature changes and variability in precipitation over a 20 year period. The results indicated that more than 80% of farmers believe that temperature in the district had become warmer and over 90% were of the opinion that rainfall timing had changed, resulting in increased frequency of drought.Res. Agric., Livest. Fish.3(1): 27-35, April 2016


Author(s):  
N. V. Danilova

Negative impact of climate change on crop yields is already an established fact. This is mainly due to rising temperatures and increasing likelihood of droughts. However, in some regions there is an increase of certain crops yields, especially the drought-resistant ones and this determines the need for research of agro-climatic conditions for formation of such crops' yield. This article presents the results of the study of agro-climatic conditions for formation of millet crops, one of the most drought-resistant crops in the forest-steppe zone of Ukraine, affected by climate change. It considers temperature, radiation and humidification regimes of millet crops. The research of the impact of climate change on the growth, development and formation of millet crops is conducted according to the scenarios of future climate change RCP4.5 and RCP8.5 for a thirty-year period (2021-2050) divided into three decades: 2021-2030, 2031-2040 and 2041-2050. The period from 1986 to 2005 is a basic period. The average long-term agroclimatic data for the forest-steppe zone of Ukraine observed in this period are used. The calculations were performed using the model of crop productivity formation which was modified and adapted to millet crop. The block diagram of the model of millet productivity formation includes blocks of main physiological processes of millet (Panicum miliaceum L.) vital activity: photosynthesis, respiration, growth, development and also includes a hydrometeorological block. It is assumed that the average air temperature will decrease in all three ten-year periods of both scenarios, compared to the accepted long-term averages. The results of calculations showed that in all ten-year periods of both scenarios there is an increase in millet yield compared with the average long-term data (1986-2005). The highest yield is formed according to the RCP8.5 scenario over the period from 2041 to 2050 and is expected at the level of 29.2 c/ha which is 19% higher than the current one.


Author(s):  
Bum Jung Kim ◽  
Sun-young Lee

Extensive research has demonstrated the factors that influence burnout among social service employees, yet few studies have explored burnout among long-term care staff in Hawaii. This study aimed to examine the impact of job value, job maintenance, and social support on burnout of staff in long-term care settings in Hawaii, USA. This cross-sectional study included 170 long-term care staff, aged 20 to 75 years, in Hawaii. Hierarchical regression was employed to explore the relationships between the key independent variables and burnout. The results indicate that staff with a higher level of perceived job value, those who expressed a willingness to continue working in the same job, and those with strong social support from supervisors or peers are less likely to experience burnout. Interventions aimed at decreasing the level of burnout among long-term care staff in Hawaii may be more effective through culturally tailored programs aimed to increase the levels of job value, job maintenance, and social support.


Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


Sign in / Sign up

Export Citation Format

Share Document