scholarly journals Metabolic and Physiological Regulation of Aspartic Acid-Mediated Enhancement of Heat Stress Tolerance in Perennial Ryegrass

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Shuhan Lei ◽  
Stephanie Rossi ◽  
Bingru Huang

Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, such as cold stress, drought stress, salt stress or heavy metal stress. This study found that the chlorophyll content and antioxidant active enzyme content (SOD, CAT, POD and APX) of perennial ryegrass treated with 2 mM aspartate were significantly higher than those treated with water under heat stress. The electrolyte leakage rate, MDA content and peroxide levels (O2− and H2O2) of perennial ryegrass treated with aspartate were significantly lower than those of perennial ryegrass treated with water, indicating that exogenous aspartate increases the content of chlorophyll, maintain the integrity of cell membrane system, and enhances SOD-CAT antioxidant pathway to eliminate the oxidative damage caused by ROS in perennial ryegrass under heat stress. Furthermore, exogenous aspartate could enhance the TCA cycle, the metabolism of the amino acids related to the TCA cycle, and pyrimidine metabolism to enhance the heat tolerance of perennial ryegrass.

2020 ◽  
Author(s):  
Ludan Hou ◽  
Mengran Zhao ◽  
Chenyang Huang ◽  
Qi He ◽  
Lijiao Zhang ◽  
...  

Abstract Background: Pleurotus ostreatus is easily affected by temperature during its cultivation. Nitric oxide (NO) plays an important regulatory role in the response to abiotic stress, and previous studies have found that NO can induce alternative oxidase (aox) in response to heat stress (HS) by regulating aconitase. However, the regulatory pathway of NO is complex, and the function and regulation of the aox gene in the response to HS remain unclear.Results: In this study, we found that NO affected the NADH and ATP levels, reduced the H2O2 and O2- contents, and slowed the production of O2-. Further RNA-Seq results showed that NO regulated the oxidation-reduction process and oxidoreductase activity, affected the cellular respiration pathway and activated aox gene expression. The function of aox was determined by constructing overexpression (OE) and RNA interference (RNAi) strains. The results showed that the OE-aox strains showed obvious advantages in experiencing growth recovery after exposure to HS. During exposure to HS, the OE-aox strains exhibited reduced levels of NADH, the product of the TCA cycle, and decreased synthesis of ATP, which reduced the production and accumulation of ROS, whereas the RNAi-aox strains exhibited the opposite result. In addition, aox mediated the expression of antioxidant enzyme genes in the mycelia of P. ostreatus under HS through the retrograde signaling pathway. Conclusions: This study shows that the aox gene in P. ostreatus mycelia can be induced by NO under HS, regulates the TCA cycle and cell respiration to reduce the production of ROS, and can mediate the retrograde signaling pathway involved in the mycelial response to HS.


Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 69 ◽  
Author(s):  
Po-Ming Chang ◽  
Kuan-Lun Li ◽  
Yen-Chang Lin

The effects of low molecular weight fucoidan (LMWF) in combination with high-stability fucoxanthin (HSFUCO) on cardiac function and the metabolic pathways of aging mice (Mus musculus) were investigated. We demonstrated that LMWF and HSFUCO could improve cardiac function in aging mice. Aging mice were treated with LMWF and HSFUCO, either on their own or in combination, on 28 consecutive days. Electrocardiography and whole-cell patch-clamp were used to measure QT interval and action potential duration (APD) of the subjects. Cardiac tissue morphology, reactive oxygen species, and Western blot were also applied. Ultra-high-performance liquid chromatography–quadrupole time-of-flight (UPLC-QTOF) mass spectrometry was used for investigating metabolic alterations. The use of LMWF and HSFUCO resulted in improvements in both ventricular rhythms (QT and APD). Treatment with fucoidan and fucoxanthin reduced the expression levels of SOS1 and GRB2 while increasing GSK3β, CREB and IRS1 proteins expression in the aging process. Three main metabolic pathways, namely the TCA cycle, glycolysis, and steroid hormone biosynthesis, were highly enriched in the pathway enrichment analysis. When taken together, the LMWF and HSFUCO treatment improved both the ventricular rhythm and the muscular function of aging subjects by interfering with the metabolism and gene function.


Author(s):  
Beata Toczylowska ◽  
◽  
Anna Slowikowska ◽  
Elzbieta Zieminska ◽  
◽  
...  

COVID-19 and its consequences are still not well known. The recovery from the infection is slow and many symptoms persist for a long time. We present the influence of the SARS-CoV-2 infection on serum metabolic profiles. The profiles were obtained using NMR spectroscopy from sera collected two years prior to the infection and twice during the recovery time from otherwise healthy subject. We performed comparisons of data collected pre- with postinfection. We present the metabolites which levels were decreased after COVID-19. These metabolites are involved in metabolic pathways like the TCA cycle, purine, glycine, arginine, proline, pyruvate, taurine, alanine, glutamate, glycerophospholipids, and cholesterol metabolism, as well as fatty acid and steroid hormone biosynthesis. Studies show changes in metabolic profiles during the recovery after COVID-19 that have not been observed by standard blood tests. Keywords: COVID-19; NMR spectroscopy; serum metabolite profiles.


2020 ◽  
Author(s):  
Riccardo Mobili ◽  
Sonia La Cognata ◽  
Francesca Merlo ◽  
Andrea Speltini ◽  
Massimo Boiocchi ◽  
...  

<div> <p>The extraction of the succinate dianion from a neutral aqueous solution into dichloromethane is obtained using a lipophilic cage-like dicopper(II) complex as the extractant. The quantitative extraction exploits the high affinity of the succinate anion for the cavity of the azacryptate. The anion is effectively transferred from the aqueous phase, buffered at pH 7 with HEPES, into dichloromethane. A 1:1 extractant:anion adduct is obtained. Extraction can be easily monitored by following changes in the UV-visible spectrum of the dicopper complex in dichloromethane, and by measuring the residual concentration of succinate in the aqueous phase by HPLC−UV. Considering i) the relevance of polycarboxylates in biochemistry, as e.g. normal intermediates of the TCA cycle, ii) the relevance of dicarboxylates in the environmental field, as e.g. waste products of industrial processes, and iii) the recently discovered role of succinate and other dicarboxylates in pathophysiological processes including cancer, our results open new perspectives for research in all contexts where selective recognition, trapping and extraction of polycarboxylates is required. </p> </div>


2021 ◽  
Vol 22 (5) ◽  
pp. 2746
Author(s):  
Dimitri Shcherbakov ◽  
Reda Juskeviciene ◽  
Adrián Cortés Sanchón ◽  
Margarita Brilkova ◽  
Hubert Rehrauer ◽  
...  

Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).


GeroScience ◽  
2021 ◽  
Author(s):  
Paul S. Brookes ◽  
Ana Gabriela Jimenez

AbstractAmong several animal groups (eutherian mammals, birds, reptiles), lifespan positively correlates with body mass over several orders of magnitude. Contradicting this pattern are domesticated dogs, with small dog breeds exhibiting significantly longer lifespans than large dog breeds. The underlying mechanisms of differing aging rates across body masses are unclear, but it is generally agreed that metabolism is a significant regulator of the aging process. Herein, we performed a targeted metabolomics analysis on primary fibroblasts isolated from small and large breed young and old dogs. Regardless of size, older dogs exhibited lower glutathione and ATP, consistent with a role for oxidative stress and bioenergetic decline in aging. Furthermore, several size-specific metabolic patterns were observed with aging, including the following: (i) An apparent defect in the lower half of glycolysis in large old dogs at the level of pyruvate kinase. (ii) Increased glutamine anaplerosis into the TCA cycle in large old dogs. (iii) A potential defect in coenzyme A biosynthesis in large old dogs. (iv) Low nucleotide levels in small young dogs that corrected with age. (v) An age-dependent increase in carnitine in small dogs that was absent in large dogs. Overall, these data support the hypothesis that alterations in metabolism may underlie the different lifespans of small vs. large breed dogs, and further work in this area may afford potential therapeutic strategies to improve the lifespan of large dogs.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 762
Author(s):  
Edward V. Prochownik ◽  
Huabo Wang

Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2634
Author(s):  
Beatriz Soldevilla ◽  
Angeles López-López ◽  
Alberto Lens-Pardo ◽  
Carlos Carretero-Puche ◽  
Angeles Lopez-Gonzalvez ◽  
...  

Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess the metabolomic profile of NET patients to understand metabolic deregulation in these tumors and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-DA was performed to evaluate metabolomic differences. Related pathways were explored using Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with biomarker potential. Results: We identified 155 differential compounds between NETs and controls. We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways annotated may open innovative avenues of clinical research.


Sign in / Sign up

Export Citation Format

Share Document