scholarly journals Together for the Better: Improvement of a Model Based Strategy for Grapevine Downy Mildew Control by Addition of Potassium Phosphonates

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 710 ◽  
Author(s):  
Gottfried Bleyer ◽  
Fedor Lösch ◽  
Stefan Schumacher ◽  
René Fuchs

Grapevine downy mildew is one of the major diseases in viticulture. To control this disease, a more effective strategy has been developed and established based on growth and model data as well as on a combination of fungicides. For this purpose, the systemic plant protection product potassium phosphonate (PP) was combined with two contact fungicides. Treatments were carried out according to the different experimental conditions after the growth of 400 cm2, 600 cm2, and 800 cm2 leaf area per primary shoot. PP increased the effectiveness of the preventive fungicides whenever high infection pressure was the case. The experiments also show that it is possible to extend the treatment intervals from 400 cm2 to 600 cm2 new leaf area when PP was added. However, none of the tested treatments were sufficient for the extension to intervals of 800 cm2. These data show that PP can be a key factor in the reduction of the application of synthetic or copper-based fungicides.

2009 ◽  
Vol 49 (2) ◽  
pp. 204-208 ◽  
Author(s):  
Ewa Szpyrka ◽  
Stanisław Sadło

Disappearance of Azoxystrobin, Cyprodinil, and Fludioxonil Residues on Tomato Leaves in a GreenhouseThe objective of this work was to estimate the disappearance parameters of azoxystrobin, cyprodinil and fludioxonil initial deposits, active ingredients of Amistar 250 SC, and Switch 62,5 WG, at present, commonly used for the protection of fruits and vegetables against diseases of fungal origin. The tests were carried out on tomato plants grown in commercial greenhouses sprayed with homogenous 0.1% aqueous solution of these plant protection products. It was found that on tomato leaves azoxystrobin, cyprodinil, and fludioxonil residues dropped by half on average within 13, 9, and 31 days after treatments, respectively. Therefore, in conditions of high infection pressure, there is a need to repeat the fungicide application but not earlier than 10 days after previous application of Amistar 250 SC and Switch 62,5 WG.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chantal Wingerter ◽  
Birgit Eisenmann ◽  
Patricia Weber ◽  
Ian Dry ◽  
Jochen Bogs

Abstract Background The high susceptibility of European grapevine cultivars (Vitis vinifera) to downy mildew (Plasmopara viticola) leads to the intensive use of fungicides in viticulture. To reduce this input, breeding programs have introgressed resistance loci from wild Vitis species into V. vinifera, resulting in new fungus-resistant grapevine cultivars (FRC). However, little is known about how these different resistance loci confer resistance and what the potential reduction in fungicide applications are likely to be if these FRCs are deployed. To ensure a durable and sustainable resistance management and breeding, detailed knowledge about the different defense mechanisms mediated by the respective Rpv (Resistance to P. viticola) resistance loci is essential. Results A comparison of the resistance mechanisms mediated by the Rpv3–1, Rpv10 and/or Rpv12-loci revealed an early onset of programmed cell death (PCD) at 8 hours post infection (hpi) in Rpv12-cultivars and 12 hpi in Rpv10-cultivars, whereas cell death was delayed in Rpv3-cultivars and was not observed until 28 hpi. These temporal differences correlated with an increase in the trans-resveratrol level and the formation of hydrogen peroxide shortly before onset of PCD. The differences in timing of onset of Rpv-loci specific defense reactions following downy mildew infection could be responsible for the observed differences in hyphal growth, sporulation and cultivar-specific susceptibility to this pathogen in the vineyard. Hereby, Rpv3- and Rpv12/Rpv3-cultivars showed a potential for a significant reduction of fungicide applications, depending on the annual P. viticola infection pressure and the Rpv-loci. Furthermore, we report on the discovery of a new P. viticola isolate that is able to overcome both Rpv3- and Rpv12-mediated resistance. Conclusion This study reveals that differences in the timing of the defense reaction mediated by the Rpv3-, Rpv10- and Rpv12-loci, result in different degrees of natural resistance to downy mildew in field. Vineyard trials demonstrate that Rpv12/Rpv3- and Rpv3-cultivars are a powerful tool to reduce the dependence of grape production on fungicide applications. Furthermore, this study indicates the importance of sustainable breeding and plant protection strategies based on resistant grapevine cultivars to reduce the risk of new P. viticola isolates that are able to overcome the respective resistance mechanism.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1013
Author(s):  
Sandrine Demanèche ◽  
Laurène Mirabel ◽  
Olivier Abbe ◽  
Jean-Baptiste Eberst ◽  
Jean-Luc Souche

Downy mildew of grapevine is one of the most destructive grapevine diseases worldwide. Nowadays, downy mildew control relies almost exclusively on the use of chemical pesticides, including copper products, which are efficient but controversial due to their environmental toxicity. Natural plant protection products have become important solutions in the quest for the sustainable production of food and pest management. However, most biocontrol agents currently on the market, such as biofungicides or elicitors, have a limited efficacy; thus, they cannot replace chemical compounds in full. Our innovation is a natural active substance, which is a lysate of the amoeba Willaertia magna C2c Maky. This active substance is not only able to elicit grapevine defenses, but it also demonstrates direct fungicidal activity against Plasmopara viticola. The efficacy of this new natural substance was demonstrated both in a greenhouse and in a field. The amoeba lysate provided up to 77% protection to grapevine bunches in the field in a natural and safe way.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


2017 ◽  
Vol 52 (6) ◽  
pp. 426-434 ◽  
Author(s):  
Francislene Angelotti ◽  
Emília Hamada ◽  
Edineide Elisa Magalhães ◽  
Raquel Ghini ◽  
Lucas da Ressureição Garrido ◽  
...  

Abstract: The objective of this work was to evaluate the potential impact of climate change on the occurrence of grapevine downy mildew in Brazil. Seedlings containing four to six leaves were sprayed with a sporangia suspension containing 105 sporangia per milliliter. After spraying, the seedlings were subjected to temperatures of 26, 28, 29.1, 30.4, and 31.8°C for 24 hours. The percentage of diseased leaf area and the latent period were evaluated. Maps of the geographic and temporal distribution of the disease were made considering the monthly average of the mean air temperature and leaf wetness duration for the reference climate or climate normal (1961-1990) and the future climates (2011-2040, 2041-2070, and 2071-2100), considering the A2 and B1 gas emission scenarios, designed by the Intergovernamental Panel on Climate Change (IPCC). Favorability ranges were set and used in logic functions of the geografical information system (GIS) to generate monthly maps for grapevine downy mildew. Rising temperatures interfered with the grapevine downy mildew infections, reduced the disease severity, and increased the latent period. Future climate scenarios indicate a reduction of favorability of downy mildew in Brazil, with variability in the different grape producing regions.


2009 ◽  
Vol 27 (1) ◽  
pp. 76-79 ◽  
Author(s):  
Sami J Michereff ◽  
Marissônia A Noronha ◽  
Gaus SA Lima ◽  
Ígor CL Albert ◽  
Edilaine A Melo ◽  
...  

The downy mildew, caused by Pseudoperonospora cubensis, is an important melon disease in Northeast Brazil. Considering the lack of standard methods for its assessment, a diagrammatic scale was developed with 2, 4, 8, 16, 32, 64, 82, and 96% of affected leaf area. The scale was then checked for its accuracy, precision, and reproducibility in estimating downy mildew severity. The diagrammatic scale was validated by eight disease raters; using 50 leaves with different severity levels, previously measured using the software Assess®. Two evaluations were performed on the same set of leaves, but in a different sequence order, by the same raters, within a 15-day interval. The accuracy and precision of each rater was determined by simple linear regression between the actual and the estimated severity. The scale provided good levels of accuracy (means of 87.5%) and excellent levels of precision (means of 94%), with absolute errors concentrated around 10%. Raters showed great repeatability (means of 94%) and reproducibility (>90% in 90.3% of cases) of estimates. Therefore, we could conclude that the diagrammatic scale presented here was suitable for evaluating downy mildew severity in melon.


2019 ◽  
Vol 109 (5) ◽  
pp. 787-795 ◽  
Author(s):  
Mathilde Chen ◽  
François Brun ◽  
Marc Raynal ◽  
David Makowski

Grapevine downy mildew (GDM) is a severe disease of grapevines. Because of the lack of reliable information about the dates of GDM symptom onset, many vine growers begin fungicide treatments early in the season. We evaluate the extent to which such preventive treatments are justified. Observational data for 266 untreated sites for the years between 2010 and 2017 were used to estimate the timing of GDM onset on vines and bunches of grapes in South West France (Bordeaux region) through survival analyses. The onset of GDM was not apparent on vines and bunches before early to mid-May, and the rate of GDM symptom appearance was highly variable across years. Depending on the year, 50% of the plots displayed symptoms between mid-May and late June for vines. For several years, our statistical analysis revealed that the proportion of plots with no symptoms was high in early August on vines (27.5 and 43.7% in 2013 and 2016) and on bunches (between 23 and 79% in 2011, 2013, and 2016). We found a significant effect of the amount of rainfall in spring on the date of symptom appearance. These results indicate that preventive fungicide application is unjustified in many vineyards, and that regional disease surveys should be used to adjust fungicide treatment dates according to local characteristics, in particular according to rainfall conditions in spring.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7601
Author(s):  
Beatriz Arauzo ◽  
Álvaro González-Garcinuño ◽  
Antonio Tabernero ◽  
María Pilar Lobera ◽  
Jesús Santamaría ◽  
...  

A new approach based on the atomization of non-Newtonian fluids has been proposed to produce microparticles for a potential inhalation route. In particular, different solutions of alginate were atomized on baths of different crosslinkers, piperazine and barium chloride, obtaining microparticles around 5 and 40 microns, respectively. These results were explained as a consequence of the different viscoelastic properties, since oscillatory analysis indicated that the formed hydrogel beads with barium chloride had a higher storage modulus (1000 Pa) than the piperazine ones (20 Pa). Pressure ratio (polymer solution-air) was identified as a key factor, and it should be from 0.85 to 1.00 to ensure a successful atomization, obtaining the smallest particle size at intermediate pressures. Finally, a numerical study based on dimensionless numbers was performed to predict particle size depending on the conditions. These results highlight that it is possible to control the microparticles size by modifying either the viscoelasticity of the hydrogel or the experimental conditions of atomization. Some experimental conditions (using piperazine) reduce the particle size up to 5 microns and therefore allow their use by aerosol inhalation.


2021 ◽  
Vol 19 (1) ◽  
pp. 1251-1258
Author(s):  
Bartosz Piechowicz ◽  
Marika Kobielska ◽  
Anna Koziorowska ◽  
Magdalena Podbielska ◽  
Ewa Szpyrka ◽  
...  

Abstract Temperature has a significant influence on the action of pyrethroids, and their effect increases with decreasing ambient temperature. Using gas chromatography, we assessed the degradation rate of λ-cyhalothrin, active ingredients (AI) of Karate Zeon 050 CS from pyrethroid group, in bees incubated for 48 h under different temperature conditions. With RT-qPCR method, we studied expression levels of selected cytochrome P450 genes after exposure to the plant protection product (PPP). The half-life of λ-cyhalothrin decreased from 43.32 to 17.33 h in the temperature range of 21–31°C. In animals incubated at 16°C, the AI half-life was even shorter and amounted to 10.19 h. The increase in temperature increased the expression of Cyp9Q1, Cyp9Q2, and Cyp9Q3 in the group of control bees. We showed a two-fold statistically significant increase in gene expression after treatment with PPP bees. The obtained results indicate that honey bees are characterized by susceptibility to pyrethroids that vary depending on the ambient temperature. This may be due to the different expressions of genes responsible for the detoxification of these PPPs at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document