scholarly journals Phytotoxic Activity of the Natural Compound Norharmane on Crops, Weeds and Model Plants

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1328
Author(s):  
David López-González ◽  
David Ledo ◽  
Luz Cabeiras-Freijanes ◽  
Mercedes Verdeguer ◽  
Manuel J. Reigosa ◽  
...  

Norharmane is a secondary metabolite that appears in different species of land plants. In this paper, we investigated for the first time the specificity of norharmane through germination and growth tests on some crops as Zea mays L. (maize), Triticum aestivum L. (wheat), Oryza sativa L. (rice) and Lactuca sativa L. (lettuce) and weeds as Amaranthus retroflexus L. (amaranth), Echinochloa crus-galli L. (barnyard grass), Plantago lanceolata L. (ribwort), Portulaca oleracea L. (common purslane) and Avena fatua L. (wild oat), and its phytotoxic capacity on the metabolism of adult Arabidopsis thaliana L. (thale cress) by measuring chlorophyll a fluorescence, pigment content, total proteins, osmotic potential and morphological analysis. Norharmane had an inhibitory effect on the germination of A. fatua and P. lanceolata, and the growth of P. oleracea, E. crus-galli and A. retroflexus. On adult A. thaliana plants, the compound was more effective to watering, leading to water stress that compromised the growth of the plants and ultimately affected the photosynthetic apparatus. Therefore, this research shows that norharmane not only affects seedlings’ metabolism, but also damages the metabolism of adult plants and can be a potential model for a future bioherbicide given its specificity.

Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 869-875 ◽  
Author(s):  
Peiguo Guo ◽  
Kassim Al-Khatib

Experiments were conducted to determine the effects of temperature on seed germination and growth of redroot pigweed, Palmer amaranth, and common waterhemp. At 15/10 C day and night temperature, respectively, no seed germination was observed in any species. Seed germination increased gradually as temperature increased. Germination peaked at 25/20 C in common waterhemp and at 35/30 C in redroot pigweed and Palmer amaranth. Seed germination of all three species declined when temperatures increased above 35/30 C. All three species produced less biomass at 15/10 C than at 25/20 C and 35/25 C. Redroot pigweed and common waterhemp biomass were similar at 15/10 C and higher than that of Palmer amaranth. However, Palmer amaranth produced more biomass than redroot pigweed and common waterhemp at 25/20 and 35/30 C. At 45/40 C, redroot pigweed, common waterhemp, and Palmer amaranth plants died 8, 9, and 25 d after initiation of heat treatment, respectively. The largest root volume among the three species was in Palmer amaranth grown at 35/30 C, whereas the smallest root volume was produced by Palmer amaranth grown at 15/10 C. Potential quantum efficiency (Fv/Fmax) of Palmer amaranth was higher than that of redroot pigweed and common waterhemp at higher temperature. The greater growth of Palmer amaranth at higher temperatures may be attributed in part to its extensive root growth and greater thermostability of its photosynthetic apparatus.


2016 ◽  
Vol 5 (01) ◽  
pp. 1261 ◽  
Author(s):  
Anjana Negi ◽  
Daizy R. Batish ◽  
Harminder Pal Singh ◽  
R. K. Kohli

Allelopathic effect of aqueous extracts of leaves of Broussonetia papyrifera (L.) Vent. was studied on germination and seedling growth of Triticum aestivum L. and Oryza sativa L. under laboratory conditions. The seed germination, seedling length, seedling dry weight and total chlorophyll content were reduced with the increasing treatment of concentration (0.5, 1, 2 and 4%) of B. papyrifera leaf extract as compared to the control. The inhibitory effect was more pronounced on the root length than on coleoptile length. The extracts were rich in phenolic compounds, which are the ubiquitous allelochemicals and often implicated in allelopathy. The study concludes that B. papyrifera exhibits allelopathy through the release of phenolics from its leaves. 


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 495
Author(s):  
Shixing Zhou ◽  
Toshmatov Zokir ◽  
Yu Mei ◽  
Lijing Lei ◽  
Kai Shi ◽  
...  

The chemical profile and allelopathic effect of the volatile organic compounds (VOCs) produced by a dominant shrub Serphidium kaschgaricum (Krasch.) Poljak. growing in northwestern China was investigated for the first time. Serphidium kaschgaricu was found to release volatile compounds into the surroundings to affect other plants’ growth, with its VOCs suppressing root elongation of Amaranthus retroflexus L. and Poa annua L. by 65.47% and 60.37% at 10 g/1.5 L treatment, respectively. Meanwhile, volatile oils produced by stems, leaves, flowers and flowering shoots exhibited phytotoxic activity against A. retroflexus and P. annua. At 0.5 mg/mL, stem, leaf and flower oils significantly reduced seedling growth of the receiver plants, and 1.5 mg/mL oils nearly completely prohibited seed germination of both species. GC/MS analysis revealed that among the total 37 identified compounds in the oils, 19 of them were common, with eucalyptol (43.00%, 36.66%, 19.52%, and 38.68% in stem, leaf, flower and flowering shoot oils, respectively) and camphor (21.55%, 24.91%, 21.64%, and 23.35%, respectively) consistently being the dominant constituents in all oils. Eucalyptol, camphor and their mixture exhibited much weaker phytotoxicity compared with the volatile oils, implying that less abundant compounds in the volatile oil might contribute significantly to the oils’ activity. Our results suggested that S. kaschgaricum was capable of synthesizing and releasing allelopathic volatile compounds into the surroundings to affect neighboring plants’ growth, which might improve its competitiveness thus facilitate the establishment of dominance.


1992 ◽  
Vol 40 (6) ◽  
pp. 737 ◽  
Author(s):  
SW Adkins

The protective conditions under which callus cultures are grown to prevent microbial contamination and to reduce tissue desiccation cause the accumulation of volatiles in the vessel headspace and reduce the availability of oxygen for respiration. To demonstrate the importance of the gaseous atmosphere to culture growth a study was undertaken on non-morphogenic rice and wheat callus incubated under a number of environmental conditions. Changes in the gaseous atmosphere above rice (Oryza sativa L.) callus during routine culture in a petri dish suppressed growth and promoted necrosis. Incubating callus under a continuous flow of gas mixtures of known composition suggested that the inhibition of growth was caused by the accumulation of high levels of ethylene and to the rapid depletion of oxygen. In order to evaluate the importance of ethylene accumulation aminoethoxyvinyl glycine (AVG), I-aminocyclopropane-I-carboxylic acid (ACC) and silver nitrate (AgNO3) were added to the nutrient medium and ethylene was measured during callus culture. Ethylene restricted callus growth particularly under high (35°C) compared with moderate (25°C) incubation temperatures and under illuminated compared with dark incubation. Under illuminated incubation at 25°C, AVG ( 5 μM ) and AgNO3 (50 μM) improved rice callus growth by 69 and 54% respectively while ACC (100 μM) decreased growth by 15%. Furthermore, rice callus growth was better in large compared with small culture vessels since ethylene accumulation was reduced. In contrast, wheat (Triticum aestivum L.) callus grew well in the petri dish system and released very little ethylene into the culture vessel headspace. Growth was better under illuminated than darkened conditions and under moderate (25°C) compared with high (35°C) incubation temperatures. Furthermore, wheat callus growth was only marginally better in large compared with small culture vessels. Ethylene was not a restrictive factor of wheat callus growth since only low levels were detected in all conditions of incubation. Better control of ethylene and increased oxygen availability could be a way of increasing cell and tissue production for genetic engineering studies of otherwise recalcitrant species such as rice, and may be a way of improving manipulation of wheat.


2017 ◽  
Vol 47 (5) ◽  
Author(s):  
João Paulo Refatti ◽  
Luis Antonio de Avila ◽  
José Alberto Noldin ◽  
Igor Pacheco ◽  
Rodrigo Ribeiro Pestana

ABSTRACT: Herbicides used in the Clearfield® rice (Oryza sativa L.) production system have a potential for leaching. This can result in contamination of underground water resources and cause injury to not tolerant crops that are sown in a succession and/or crop rotation. The objective of this study was to determine the leaching potential and the residual activity of the herbicides used in the Clearfield® rice system. The experiment was conducted over a period of two years and consisted of conducting a field test to be followed by two bioassays with a year of difference between their implementation. Initially an experiment was conducted in lowland area where it was planted the cultivar of rice ‘PUITA INTA CL’. Approximately one and two years thereafter, soil samples from each plot were collected at intervals of 5cm to a depth of 30cm (B factor) for the bioassay to evaluate persistence of herbicides. Factor A was composed of mixtures formulated of imazethapyr + imazapic (75 + 25g a.i. L-1), imazapyr + imazapic (525 + 175g a.i. kg-1) in two doses, imazethapyr (100g a.i. L-1) and treatment control without application. Basing on results, it was concluded that the mixtures imazethapyr + imazapic, imazapyr + imazapic and imazethapyr leached into the soil, reaching depths of up to 25cm in lowland soil. Imidazolinone herbicides used today in the irrigated rice Clearfield® system are persistent in soil, and their phytotoxic activity can be observed up to two years after application.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 479-485 ◽  
Author(s):  
J. E. Dale ◽  
J. M. Chandler

The feasibility of herbicide and crop rotation for the control of johnsongrass [Sorghum halepense(L.) Pers.] in corn (Zea maysL.) was studied in field experiments. Light infestations of johnsongrass were initially present, but it became the predominant weed after 4 yr of continuous corn treated with atrazine [2-chloro-4-(ethylamino)-6-(isopropylamine)-s-triazine], cyanazine {2-[[4-chloro-6-(ethylamino)-s-triazin-2-yl]amino]-2-methylpropionitrile}, and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea], alone and in combinations at rates of 2.24, 2.24, and 0.84 kg/ha, respectively. The infestation of johnsongrass was effectively controlled by growing corn in rotation with cotton (Gossypium hirsutumL.) in a cropping sequence of corn-cotton-cotton-corn, in which trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] and MSMA (monosodium methanearsonate) at 0.56, 2.24, and 2.24 kg/ha respectively, were used for weed control in cotton. In the corn-cotton-cotton-corn cropping sequence, the herbicide treatments also prevented increases in the populations of other indigeneous weeds including prickly sida (Sida spinosaL.), prostrate spurge (Euphorbia supinaRaf.), spotted spurge (Euphorbia maculataL.), common purslane (Portulaca oleraceaL.), tall morningglory [Ipomoea purpurea(L.) Roth], common cocklebur (Xanthium pensylvanicumWallr.), spurred anoda[Anoda cristata(L.) Schlecht.], hemp sesbania [Sesbania exaltata(Raf.) Cory], redroot pigweed (Amaranthus retroflexusL.), goosegrass [Eleusine indica(L.) Gaertn.], junglerice [Echinochloa colonum(L.) Link], large crabgrass [Digitaria sanguinalis(L.) Scop.], and purple nutsedge (Cyperus rotundusL.).


2016 ◽  
Vol 3 (1) ◽  
pp. 26-29
Author(s):  
Prabhakaran J ◽  
Kavitha D

A laboratory study was conducted to assess the herbicidal potential of root exudates of three rice cultivars (ADT-36, BPT and IR-20) against germination and growth of common crop field weed, barnyard grass (Echinochloa crus-galli L.). Various concentrations (5, 10, 15 and 20%) of root exudates were prepared from the underground part of rice cultivars from the postharvest rice fields. The studies revealed that all the three rice cultivars were exhibited significant inhibition on growth and development of weed species. Among the rice cultivars, ADT-36 exhibited the greatest inhibition on the seed germination (86%), seedling growth(83%), dry weight (81%) of barnyard cross than BPT and ADT-36. The percentage of inhibition on concentration depends. The order of inhibition of the rice cultivars was ADT-36 > BPT > IR-20 on barnyard grass.


2015 ◽  
Vol 2 (2) ◽  
pp. 114-117
Author(s):  
Anbarasan R ◽  
Prabhakaran J

Various concentrations (5%, 10%, 15% and 20%) of aqueous extracts prepared from two weed species namely Ageratum conyzoides L. and Cleome viscosa L. and used for the present experiments to determine their allelopathic potential on growth and developmental changes on sesame (Sesamum indicum L.). The weed extracts showed an inhibitory effect on germination percentage, root and shoot growth, and fresh and dry weight of sesame seedlings. The extracts of A.conyzoides had more inhibitory effect at 20%concentration,than that of C.viscosa on growth parameters of sesame.


Sign in / Sign up

Export Citation Format

Share Document