scholarly journals Influences of Fluorine Substituents on Iminopyridine Fe(II)- and Co(II)-Catalyzed Isoprene Polymerization

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 934 ◽  
Author(s):  
Guangqian Zhu ◽  
Xianhui Zhang ◽  
Mengmeng Zhao ◽  
Liang Wang ◽  
Chuyang Jing ◽  
...  

A series of iminopyridine complexes of Fe(II) and Co(II) complexes bearing fluorinated aryl substituents were synthesized for the polymerization of isoprene. The structures of complexes 3a, 2b and 3b were determined by X-ray diffraction analysis. Complex 3a contained two iminopyridine ligands coordinated to the iron metal center forming an octahedral geometry, whereas 2b adopted a chloro-bridged dimer, and 3b featured with two patterns of cobalt centers bridged via chlorine atoms. Complexes 2b and 3b represented rare examples of chlorine bridged bimetallic Co(II) complexes. The fluorine substituents effects, particularly on catalytic activity and polymer properties such as molecular weight and regio-/stereo-selectivity were investigated when these complexes were employed for isoprene polymerization. Among the Fe(II)/methylaluminoxane (MAO) systems, the 4-CF3 substituted iminopyridine Fe(II) complex 1a was found as a highly active isoprene polymerization catalyst exhibiting the highest activity of 106 g·(mol of Fe)−1·h−1. The resultant polymer displayed lower molecular weight (Mn = 3.5 × 104 g/mol) and moderate polydispersity index (PDI = 2.1). Furthermore, the ratio of cis-1,4-/3,4 was not affected by the F substituents. In the series of Co(II)/AlEt2Cl binary systems, complexes containing electron-withdrawing N-aryl substituents (R = 4-CF3, 2,6-2F) afforded higher molecular weights polyisoprene than that was obtained by the complex containing electron-donating N-alkyl substituents (R = octyl). However, ternary components system, complex/MAO/[Ph3C][B(C6F5)4] resulted in low molecular weight polyisoprene (Mn < 2000) with high trans-1,4-unit (>95%).

2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 445 ◽  
Author(s):  
Xue Liu ◽  
Peng Du ◽  
Xiao Liu ◽  
Sujian Cao ◽  
Ling Qin ◽  
...  

The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1–MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1–MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1–MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1–MSP-F4 with molecular weights of 24–240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.


2020 ◽  
Vol 81 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Wenzhe Song ◽  
Yu Zhang ◽  
Amir Hossein Hamidian ◽  
Min Yang

Abstract The biodegradation of polyacrylamide (PAM) includes the hydrolysis of amino groups and cleavage of the carbon chain; however, the effect of molecular weight on the biodegradation needs further investigations. In this study, biodegradation of low molecular weight PAM (1.6 × 106 Da) was evaluated in two aerobic (25 °C and 40 °C) and two anaerobic (35 °C and 55 °C) reactors over 100 days. The removal of the low molecular weight PAM (52.0–52.6%) through the hydrolysis of amino groups by anaerobic treatment (35 °C and 55 °C) was much higher than that of the high molecular weight (2.2 × 107 Da, 11.2–17.0%) observed under the same conditions. The molecular weight was reduced from 1.6 × 106 to 6.45–7.42 × 105 Da for the low molecular weight PAM, while the high molecular weight PAM declined from 2.2 × 107 to 3.76–5.87 × 106 Da. The results showed that the amino hydrolysis of low molecular weight PAM is easier than that of the high molecular weight one, while the cleavage of its carbon chain is still difficult. The molecular weights of PAM in the effluents from the two aerobic reactors (25 °C and 40 °C) were further reduced to 4.31 × 105 and 5.68 × 105 Da by the biofilm treatment, respectively. The results would be useful for the management of wastewater containing PAM.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 406 ◽  
Author(s):  
Yuwei Zuo ◽  
Wenzhong Yang ◽  
Kegui Zhang ◽  
Yun Chen ◽  
Xiaoshuang Yin ◽  
...  

Poly acrylic acid (PAA) and polyepoxysuccinic acid (PESA) were investigated as scale inhibitors. The static experiments certified that PAA was superior to PESA for the inhibition of calcium carbonate in the low molecular weight range. The X-ray diffraction patterns suggest that the effect of PAA on the calcite (1 0 4) and (1 1 0) crystal plane was more obvious. Scanning electron microscopy was used to study the surface morphology of the depositions, which indicated that the addition of scale inhibitors could disturb the normal growth of CaCO3 scale. The transmittance ratio of ferric oxide demonstrated that PAA had a better dispersion performance than PESA. The molecular dynamics simulation and quantum calculation were selected to theoretically explore the mechanism and structure of scale inhibitors, indicating that the interaction of PAA with (1 0 4) and (1 1 0) calcite crystal surfaces was stronger than PESA. In addition, the results indicated that the PAA with negative charge more easily adsorbed free Ca2+ in the aqueous phase. Based on these observations, PAA exhibited better scale inhibition and dispersion effects than PESA in the case of low molecular weight.


1993 ◽  
Vol 39 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Paul J. Henningson ◽  
Neil C. Gudmestad

The exopolysaccharides produced by six strains of Clavibacter michiganensis ssp. sepedonicus were isolated and purified by liquid chromatography. Neutral sugar composition and molecular weights were determined for each polysaccharide fraction, using gas chromatography and high-performance size-exclusion chromatography. The serological reaction of each fraction was tested using enzyme-linked immunosorbent assay. Exopolysaccharide from nonmucoid strains contained only low molecular weight polysaccharides (1.5 × 103 to 1.1 × 104). Exopolysaccharide from mucoid and intermediate strains could be separated into low (4.0 × 103 to 1.1 × 104) molecular weight and high (5.0 × 105 to 1.6 × 106) molecular weight fractions. High molecular weight polysaccharides were composed almost exclusively of galactose, glucose, and fucose. The ratios of these sugars were highly variable among strains. Low molecular weight polysaccharides were primarily composed of galactose with significant and varying amounts of glucose, rhamnose, mannose, and ribose. All polysaccharide fractions except one, produced by a nonmucoid strain, reacted in the immunoassay test.Key words: exopolysaccharide, polysaccharide, Clavibacter, michiganensis, sepedonicus.


1996 ◽  
Vol 455 ◽  
Author(s):  
A. Sahnoune ◽  
L. Piché

ABSTRACTWe present measurements of the glass transition and the ultrasonic relaxation modulus in a series of monodisperse polystyrenes. The temperature dependence of the modulus was analyzed using Havriliak-Negami relaxation model (HN) and Vogel-Tammann-Fulcher equation (VTF) for the relaxation time. The results allowed us to determine the fragility index, m, which decreases with increasing molecular weight, Mn. Furthermore, the relaxation time was found to saturate at high molecular weights and varies as Mnp, in the low molecular weight region. The exponent is p≈2 at high temperatures and p ≈ 7 at low temperatures close to Tg.


2015 ◽  
Vol 60 (2) ◽  
pp. 1561-1564
Author(s):  
E.-H. Lee ◽  
K.-M. Kim ◽  
W.-Y. Maeng ◽  
D.-H. Hur

Abstract After preparing aqueous suspensions from magnetite particles with a poly-acrylic acid, we investigated the effects of several experimental parameters. We characterized the stability of the suspensions using visual inspection, sedimentation, adsorption, and thermal stability of the dispersant. The dispersion stability is affected by the solution pH, the concentrations of magnetite particles, the molecular weight, the concentration of the dispersants, and the temperature. The stability of the suspensions increased as the concentration of the dispersant and the temperature increased. In terms of the molecular weights of the dispersant, the suspensions with dispersant of low-molecular weight (1800) were more stable than those of high-molecular weight (250000) at room temperature. However, at high temperature the suspensions with high-molecular weight showed stability. The adsorption efficiency of the dispersant was very low. The dispersant of high-molecular weight showed a higher thermal integrity than that of low-molecular weight. From this work, we obtained the optimum conditions for stable aqueous suspensions of magnetite particles.


1981 ◽  
Author(s):  
Grant Barlow ◽  
N Sugisaka ◽  
F J Petracek

Molecular weights were independently determined on nitrous acid depolymerized LMW heparin fractions ranging from 2-15 daltons using the analytical ultracentrifuge and high pressure liquid chromatography (HPLC).Sedimentation-diffusion equilibria were obtained in the analytical ultracentrifuge using speeds ranging from 20,000 to 56,000 rpm. Near theta conditions were obtained using 0.5M NaCl as the solvent. Calculations of molecular weight distributions and, from those figures, weight average molecular weights were made using the method described by Scholte (N.Y. Acad Sci. 164, 156, 1969). The results show that weight average values as low as 2,000 daltons can be determined.Sedimentation-diffusion equilibria were obtained in the analytical ultracentrifuge using speeds ranging from 20,000 to 56,000 rpm. Near theta conditions were obtained using 0.5M NaCl as the solvent. Calculations of molecular weight distributions and, from those figures, weight average molecular weights were made using the method described by Scholte (N.Y. Acad Sci. 164, 156, 1969). The results show that weight average values as low as 2,000 daltons can be determined.The HPLC results were obtained using previously described methods (Fed Proc. 36, 89, 1977) and a new highly efficient gel column (TSK gels). Fractionated dextrans were used as reference standards.


1972 ◽  
Vol 50 (1) ◽  
pp. 191-197 ◽  
Author(s):  
R. G. S. Bidwell ◽  
Elizabeth Percival ◽  
Berit Smestad

Samples of Fucus vesiculosus fronds were allowed to assimilate 14CO2 for 10 min and 3 h. In a second experiment fronds were allowed to grow for 10 min in 14CO2 and were then transferred to fresh medium containing 12CO2. Samples were taken immediately, after 30 min, and after 2 h. Sequential extraction and fractionation of the polysaccharides from each of the five samples gave 14C-labeled laminaran, xylogalactofucoglucuronan (A), xyloglucuronogalactofucan (B) (these polysaccharides are named in the order of the increasing proportions of their constituent sugars), fucoidan (C), alginic acid, and residual polysaccharide material containing mainly glucose with some galactose. The activities of each of the polysaccharides, the residual material, and their constituent sugars were measured. Highly active low molecular weight carbohydrates, present in the acid extract, are the suggested precursors of the polysaccharides. The fucose-containing polysaccharides represent the extremes of a family of polymers; it is postulated from these studies that (A) is transformed into fucoidan via polysaccharide (B) in this alga.


1987 ◽  
Vol 67 (4) ◽  
pp. 945-952 ◽  
Author(s):  
B. A. MARCHYLO

Sodium dodecyl sulphate gradient polyacrylamide gel electrophoresis (SDSGPAGE) was used to resolve gliadin and high- and low-molecular-weight glutenin subunits from 19 registered Canadian spring wheat cultivars eligible for Canada Western Red Spring (CWRS) and Canada Prairie Spring (CPS) wheat grades and eight nonregistered spring wheat cultivars from the U.S.A. Reproducible molecular weight estimates were obtained for wheat proteins of apparent molecular weights ranging from 34 238 to 136 174 (avg. CV = 0.72%). Eight different patterns of HMW glutenin subunits consisting of 7–11 protein bands were observed for the 27 cultivars and their biotypes. SDSGPAGE was able to discriminate among the majority of cultivars with all non-registered cultivars and their biotypes distinguishable from registered cultivars. Separation of glutenin subunits along with gliadins provided additional protein bands which assisted in the discrimination of cultivars.Key words: SDS gradient PAGE, wheat cultivar identification, gliadin, glutenin subunits


Sign in / Sign up

Export Citation Format

Share Document