scholarly journals Hydrogel Small-Diameter Vascular Graft Reinforced with a Braided Fiber Strut with Improved Mechanical Properties

Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 810 ◽  
Author(s):  
Guoping Guan ◽  
Chenglong Yu ◽  
Meiyi Xing ◽  
Yufen Wu ◽  
Xingyou Hu ◽  
...  

Acute thrombosis remains the main limitation of small-diameter vascular grafts (inner diameter <6 mm) for bridging and bypassing of small arteries defects and occlusion. The use of hydrogel tubes represents a promising strategy. However, their low mechanical strength and high swelling tendency may limit their further application. In the present study, a hydrogel vascular graft of Ca alginate/polyacrylamide reinforced with a braided fiber strut was designed and fabricated with the assistance of a customized casting mold. Morphology, structure, swellability, mechanical properties, cyto- and hemocompatibility of the reinforced graft were characterized. The results showed that the reinforced graft was transparent and robust, with a smooth surface. Scanning electron microscopic examination confirmed a uniform porous structure throughout the hydrogel. The swelling of the reinforced grafts could be controlled to 100%, obtaining clinically satisfactory mechanical properties. In particular, the dynamic circumferential compliance reached (1.7 ± 0.1)%/100 mmHg for 50–90 mmHg, a value significantly higher than that of expanded polytetrafluoroethylene (ePTFE) vascular grafts. Biological tests revealed that the reinforced graft was non-cytotoxic and had a low hemolysis percentage (HP) corresponding to (0.9 ± 0.2)%. In summary, the braided fiber-reinforced hydrogel vascular grafts demonstrated both physical and biological superiority, suggesting their suitability for vascular grafts.

2021 ◽  
Author(s):  
◽  
William King, III ◽  

The ideal “off the shelf” tissue engineering, small-diameter (< 6 mm inner diameter (ID)) vascular graft hinges on designing a template that facilitates transmural ingrowth of capillaries to regenerate an endothelized neointimal surface. Previous traditionally electrospun (TES) approaches to create bioresorbable vascular grafts lack the pore sizes required to facilitate transmural capillary ingrowth required for successful in situ neovascular regeneration. Therefore, the ability to create scaffolds with program-specific architectures independent of fiber diameter via the relatively recent sub-technique of near-field electrospinning (NFES) represents a promising solution to create tissue engineering vascular grafts. These programmed large pore sizes are anticipated to promote in situ regeneration and improve the outcomes as well as the quality of life of patients with arterial disease. In this dissertation, we manufactured via NFES as well as characterized biodegradable polydioxanone (PDO) small-diameter vascular grafts. Chapter 1 introduces the need for off-the-shelf, small-diameter vascular grafts to facilitate in situ regeneration, the process and pore size limitations of TES vascular grafts, and the promising use of NFES to develop precisely tailored PDO vascular grafts. Chapter 2 describes the process of NFES and details the current progress in NFES of biomedical polymers as well as the major limitations that exist in the field. Chapters 3, 4, and 5 contain primary research exploring the creation of an NFES vascular graft scaffold and characterizing the mechanical as well as biological response of these scaffolds. Specifically, in Chapter 3 we demonstrate a NFES apparatus designed around a commercial 3D printer to write PDO microfibers. The processing parameters of air gap, polymer concentration, translational velocity, needle gauge, and applied voltage were characterized for their effects on PDO fiber diameter. The processing parameters of polymer concentration and translational fiber deposition velocity were further characterized for their effects on fiber crystallinity and individual fiber uniformity. The precision of fiber stacking via a 3D printer was qualitatively evaluated to inform the creation of 3D scaffolds to guide the alignment of human gingival fibroblasts. It was found that fiber diameters correlate positively with polymer concentration, applied voltage, and needle gauge and inversely correlate with translational velocity and air gap distance. Individual fiber diameter variability decreases, and crystallinity increases with increasing translational fiber deposition velocity. These data resulted in the creation of tailored PDO 3D scaffolds which guided the alignment of primary human fibroblast cells. Together, these results suggest that NFES of PDO can be scaled to create precise geometries with tailored fiber diameters for vascular graft scaffolds. In Chapter 4, we demonstrated a NFES device to semi-stably write PDO microfibers. The polymer spinneret was programmed to translate in a stacking grid pattern, which resulted in a scaffold with highly aligned grid fibers that were intercalated with low density, random fibers. As a consequence of this random switching process, increasing the grid dimensions resulted in both a lower density of fibers in the center of each grid in the scaffold as well as a lower density of “rebar-like” stacked fibers per unit area. These hybrid architecture scaffolds resulted in tailorable as well as greater surface pore sizes as given by scanning electron micrographs and effective object permeability as indicated by fluorescent microsphere filtration compared to TES scaffolds of the same fiber diameter. Furthermore, these programmable scaffolds resulted in tailorability in the characterized mechanical properties ultimate tensile strength, percent elongation, yield stress, yield elongation, and Young’s modulus independent of fiber diameter compared to the static TES scaffold characterization. Lastly, the innate immune response of neutrophil extracellular traps (NETs) was further attenuated on NFES scaffolds compared to TES scaffolds. These results suggest that this novel NFES scaffold architecture of PDO can be highly tailored as a function of programming for small diameter vascular graft scaffolds. In Chapter 5, we created two types of NFES PDO architectures, as small-diameter vascular graft scaffolds. The first architecture type consisted of a 200 x 200 µm and 500 x 500 µm grid geometry with random fiber infill produced from one set of processing parameters, while the second architecture consisted of aligned fibers written in a 45°/45° and 20°/70° offset from the long axis, both on a 4 mm diameter cylindrical mandrel. These vascular graft scaffolds were characterized for their effective object transit pore size, mechanical properties, and platelet-material interactions compared to TES scaffolds and Gore-Tex® vascular grafts. It was found that effective pore size, given by 9.9 and 97 µm microsphere filtration through the scaffold wall for NFES grafts, was significantly more permeable compared to TES grafts and Gore-Tex® vascular grafts. Furthermore, the characterized mechanical properties of ultimate tensile strength, percent elongation, suture retention, burst pressure, and Young’s modulus were all tailorable for NFES grafts, independent of fiber diameter, compared to TES graft characterization. Lastly, platelet adhesion was attenuated on large pore size NFES grafts compared to the TES grafts which approximated the low level of platelet adhesion measured on Gore-Tex® grafts, with all grafts showing minimal platelet activation given by P-selectin surface expression. Together, these results suggest a highly tailorable process for the creation of the next generation of small-diameter vascular grafts. Lastly, Chapter 6 expounds future considerations for continuing research in NFES technology, NFES for general tissue engineering, and NFES for vascular tissue engineering as well as gives final conclusions. Together, the finding of this dissertation indicated that NFES vascular grafts result in seamless, small diameter tubular scaffolds with programmable pore sizes on the magnitude anticipated to facilitate transmural endothelialization as well as programmable mechanical properties that approximate native values. Thus, this work represents the next step in developing bioinstructive designed scaffolds to facilitate in situ vascular regeneration to improve the outcomes as well as the quality of life of patients with arterial vascular disease.


RSC Advances ◽  
2017 ◽  
Vol 7 (30) ◽  
pp. 18775-18784 ◽  
Author(s):  
Jingchen Gao ◽  
Yaping Wang ◽  
Siyuan Chen ◽  
Di Tang ◽  
Li Jiang ◽  
...  

Vascular grafts are significantly needed in peripheral vascular surgery; however, small diameter grafts are not always available, and synthetic grafts perform poorly because of acute thrombosis and neointimal proliferation after implantation.


Author(s):  
Yuen Ting Lam ◽  
Richard P. Tan ◽  
Praveesuda L. Michael ◽  
Kieran Lau ◽  
Nianji Yang ◽  
...  

The rising incidence of cardiovascular disease has increased the demand for small diameter (&lt;6 mm) synthetic vascular grafts for use in bypass surgery. Clinically available synthetic grafts (polyethylene terephthalate and expanded polytetrafluorethylene) are incredibly strong, but also highly hydrophobic and inelastic, leading to high rates of failure when used for small diameter bypass. The poor clinical outcomes of commercial synthetic grafts in this setting have driven significant research in search of new materials that retain favourable mechanical properties but offer improved biocompatibility. Over the last several decades, silk fibroin derived from Bombyx mori silkworms has emerged as a promising biomaterial for use in vascular applications. Progress has been driven by advances in silk manufacturing practices which have allowed unprecedented control over silk strength, architecture, and the ensuing biological response. Silk can now be manufactured to mimic the mechanical properties of native arteries, rapidly recover the native endothelial cell layer lining vessels, and direct positive vascular remodelling through the regulation of local inflammatory responses. This review summarises the advances in silk purification, processing and functionalisation which have allowed the production of robust vascular grafts with promise for future clinical application.


2008 ◽  
Vol 22 (S2) ◽  
pp. 605-605
Author(s):  
Mauricio Antonio Contreras ◽  
Mathew Douglas Phaneuf ◽  
Shengqian Wu ◽  
Martin J. Bide ◽  
Frank W. LoGerfo

2018 ◽  
Vol 38 (6) ◽  
pp. 525-535 ◽  
Author(s):  
Ipek Yalcin Enis ◽  
Telem Gok Sadikoglu ◽  
Jana Horakova ◽  
David Lukas

AbstractVascular grafts provide promising scaffolds for patients recuperating from cardiovascular diseases. Since it is necessary to mimic the native vessel in order to overcome the limitations of currently employed synthetic prostheses, researchers are tending to focus on the design of electrospun biodegradable multi-layer scaffolds which involves varying either the polymer type or constructional properties in each layer which, in turn, reveals the importance of layer interactions and their composite effect on the final multi-layer graft. This study describes the fabrication of biodegradable single-layer tubular scaffolds from polycaprolactone and poly(L-lactide)caprolactone polymers composed of either randomly distributed or, preferably, radially oriented fibers. Subsequently, bi-layer scaffolds were fabricated with a randomly distributed inner layer and a radially oriented outer layer from various polymer couple variations. The study focuses on vascular graft production technology including its morphology and mechanical properties. The post-morphologies of single-layer and bi-layer tubular scaffolds designed for vascular grafts were investigated as a continuation of a previously performed analysis of their mechanical properties. The results indicate that the mechanical properties of the final bi-layer grafts were principally influenced by the radially oriented outer layers acting as thetunica mediaof the native vessels when the appropriate polymer couples were chosen for the sub-layers.


Author(s):  
Andrew Whitton ◽  
David J. Flint ◽  
Richard A. Black

Synthetic vascular grafts are an integral tool in vascular surgery. However, the consistent failure of small diameter grafts is one of the main limitations of these devices. For this reason electrospun polyurethane has been investigated for its suitability as a vascular substitute material in this present study. Aligned and random mesh electrospun polyurethane materials were produced and analysed in vitro by investigating the effect of using both materials as a substrate for the culture of human aortic smooth muscle cells. Immunofluorescence analysis showed that cells cultured on electrospun polyurethane maintained a contractile phenotype to a much greater extent than those cultured on cast polyurethane membranes. This contractile phenotype is associated with the state in which a cell would normally reside in a healthy vessel, suggesting that electrospun polyurethane may provide a suitable vascular substitute material.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Wei Heng ◽  
Muhammad Dain Yazid ◽  
Mohd Ramzisham Abdul Rahman ◽  
Nadiah Sulaiman

Developments in tissue engineering techniques have allowed for the creation of biocompatible, non-immunogenic alternative vascular grafts through the decellularization of existing tissues. With an ever-growing number of patients requiring life-saving vascular bypass grafting surgeries, the production of functional small diameter decellularized vascular scaffolds has never been more important. However, current implementations of small diameter decellularized vascular grafts face numerous clinical challenges attributed to premature graft failure as a consequence of common failure mechanisms such as acute thrombogenesis and intimal hyperplasia resulting from insufficient endothelial coverage on the graft lumen. This review summarizes some of the surface modifying coating agents currently used to improve the re-endothelialization efficiency and endothelial cell persistence in decellularized vascular scaffolds that could be applied in producing a better patency small diameter vascular graft. A comprehensive search yielding 192 publications was conducted in the PubMed, Scopus, Web of Science, and Ovid electronic databases. Careful screening and removal of unrelated publications and duplicate entries resulted in a total of 16 publications, which were discussed in this review. Selected publications demonstrate that the utilization of surface coating agents can induce endothelial cell adhesion, migration, and proliferation therefore leads to increased re-endothelialization efficiency. Unfortunately, the large variance in methodologies complicates comparison of coating effects between studies. Thus far, coating decellularized tissue gave encouraging results. These developments in re-endothelialization could be incorporated in the fabrication of functional, off-the-shelf alternative small diameter vascular scaffolds.


2019 ◽  
Vol 8 (2) ◽  
pp. 87-97
Author(s):  
L. V. Antonova ◽  
E. O. Krivkina ◽  
M. A. Rezvova ◽  
V. V. Sevost'yanova ◽  
A. V. Mironov ◽  
...  

Background. Tissue-engineered vascular grafts can be reinforced by a biostable or biodegradable polymer sheath. A combination of electrospinning, routinely used for fabrication of biodegradable tubular grafts, and the layer-by-layer coating allows forming a polymeric sheath ensuring long-term integrity and high biocompatibility of the vascular grafts after the implantation. Aim To evaluate mechanical properties and in vivo performance of biodegradable small-diameter vascular grafts with a reinforcing sheath.Methods. Tubular grafts (4 mm diameter) were fabricated from poly(3-hydroxybutyrate-co3-hydroxyvalerate) and poly(ε-caprolactone) by emulsion electrospinning with the incorporation of vascular endothelial growth factor (VEGF) into the inner third of the graft and basic fibroblast growth factor (bFGF) along with stromal cell-derived factor-1α (SDF-1α) into the outer two thirds of the graft wall. Poly(ε-caprolactone) sheath was formed by the layer-by-layer coating. Upon graft fabrication, scanning electron microscopy was performed to assess the grafts’ surface, tensile testing allowed evaluating mechanical properties. The samples were implanted into the ovine carotid artery (n = 5 animals) for 12 months with the subsequent histological examination.Results. Sintering temperature of 160°C during the extrusion allowed effective and delicate merging of poly(ε-caprolactone) coating with the outer surface of the poly(3hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) tubular graft. The thickness of poly(ε-caprolactone) fiber was 380–400 μm, the increment of the reinforcing filament was 1 mm. The reinforcing sheath led to a 3-fold increase in durability and elastic modulus of the vascular grafts. At the 12-months follow-up, the grafts reported retained integrity. No signs of inflammation or calcification were found.Conclusion. The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ε-caprolactone) vascular grafts with hierarchically incorporated growth factors and the reinforced poly(ε-caprolactone) spiral sheath demonstrated improved mechanical properties while retaining integrity and high biocompatibility after the long-term implantation into the ovine carotid artery.


Sign in / Sign up

Export Citation Format

Share Document