scholarly journals 3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluronic-Acid-Based Hydrogels

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1584 ◽  
Author(s):  
Si ◽  
Xing ◽  
Ding ◽  
Zhang ◽  
Yin ◽  
...  

:Hyaluronic acid (HA)-based hydrogels are widely used in biomedical applications due to their excellent biocompatibility. HA can be Ultraviolet (UV)-crosslinked by modification with methacrylic anhydride (HA-MA) and crosslinked by modification with 3,3'-dithiobis(propionylhydrazide) (DTP) (HA-SH) via click reaction. In the study presented in this paper, a 3D-bioprinted, double-crosslinked, hyaluronic-acid-based hydrogel for wound dressing was proposed. The hydrogel was produced by mixing HA-MA and HA-SH at different weight ratios. The rheological test showed that the storage modulus (G') of the HA-SH/HA-MA hydrogel increased with the increase in the HA-MA content. The hydrogel had a high swelling ratio and a high controlled degradation rate. The in vitro degradation test showed that the hydrogel at the HA-SH/HA-MA ratio of 9:1 (S9M1) degraded by 89.91% ± 2.26% at 11 days. The rheological performance, drug release profile and the cytocompatibility of HA-SH/HA-MA hydrogels with loaded Nafcillin, which is an antibacterial drug, were evaluated. The wound dressing function of this hydrogel was evaluated by Live/Dead staining and CCK-8 assays. The foregoing results imply that the proposed HA-SH/HA-MA hydrogel has promise in wound repair applications.

Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


2019 ◽  
Vol 11 (11) ◽  
pp. 1522-1530
Author(s):  
Mahwish Kamran ◽  
Mir Azam Khan ◽  
Muhammad Shafique ◽  
Maqsood ur Rehman ◽  
Waqar Ahmed ◽  
...  

Atorvastatin is an extensively used lipid lowering agent. But the vital issue associated with it is low oral bioavailability (12%) owing to poor aqueous solubility. To overcome this tribulation, binary solid lipid nano suspension of Atorvastatin (ATO) was formulated by solvent diffusion method. The combination of stearic acid and oleic acid was utilized as a lipid carrier with Tween-80 (surfactant) along with Polyvinylpyrrolidone (co-surfactant). Optimized nano formulation was prepared by changing the formulation variables. Optimized nano suspension (ATO-4) represented particle size 228.3 ± 2.1 nm and polydispersity index (PDI) 0.225 ± 0.02 with zeta potential (ZP) – 33.6 ± 0.02 mV. Encapsulation efficiency along with drug loading capacity was 88.3 ± 2.5% and 4.9 ± 0.14% respectively. Scanning electron microscopic (SEM) analysis exposed spherical shaped amorphous particles. Differential scanning calorimetry (DSC) as well as X-ray powder diffraction (P-XRD) established reduction in drug's crystalline state. Fourier transform infrared (FTIR) spectroscopy exposed no interaction amongst the drug and formulation contents. In-vitro studies revealed sustained pattern of drug release. Stability studies confirmed refrigerated temperature as most suitable for storage of binary solid lipid nano suspension. Plasma concentration versus time curve ascertained 2.78-fold increase in oral bioavailability of ATO nano suspension compared to the marketed product (Lipitor®). Findings proposed desired improvement in oral bioavailability of ATO nano suspension with sustained drug release profile. Thus, binary solid lipid nano suspension could be utilized as an advanced drug delivery system for oral deliverance of hydrophobic drugs.


Author(s):  
Ritesh Kumar ◽  
Kashmira J. Gohil

Objective: The aim of the present study was to increase the absolute bioavailability of famotidine, enhanced patient compliance in the treatment of peptic ulcer by increasing its gastric residence time and controlled local release of drug upto 12 hours. Materials and Methods: Hydrodynamically balanced capsules of famotidine were prepared, consisting of floating matrix granules, which formed hydrogels. Effects of different formulation variables namely hypromellose (HPMC 4000 cps, HPMC 5600 cps, HPMC 15000 cps), effervescent agent (potassium bicarbonate) and mixing time were studied. Optimization study included 23 full factorial design with t50% and t80% as the kinetic parameters (response variable). Matrix characterization included scanning electron microscopy. All prepared formulations were evaluated to various parameters such as micromeritics properties, % buoyancy and in vitro drug release studies. Results and Discussion: The optimized formulation (F4) remains buoyant for more than 12 hrs. The in-vitro drug release study indicated that increasing the viscosity of HPMC resulted in sustained drug release with long floating duration. SEM studies showed definite entrapment of the drug in the matrix and hydrogel formation. Results showed a pH independent but polymer viscosity dependent drug release profile. The release kinetics followed Higuchi model and mechanism of release was found to be non-Fickian diffusion. Conclusion: Famotidine-loaded hydrodynamically balanced capsules were successfully prepared and prove to be useful for prolonged gastric residence of the drug, better bioavailability, patient compliance and improve delivery for enhanced anti-ulcer activity.


2012 ◽  
Vol 164 ◽  
pp. 487-491
Author(s):  
Deng Guang Yu ◽  
Xia Wang ◽  
Yao Zu Liao ◽  
Ying Li ◽  
Wei Qian ◽  
...  

An electrohydrodynamic atomization (EHDA) process was exploited to prepare helicid-loaded zein microparticles. SEM observations showed that all the particles prepared under varied voltages were round and solid with their sizes gradually decreased from 3.4 ± 1.7 to 1.1 ± 0.5 μm as the applied voltages rose from 6 to 18 kV. Wide-angle X-ray diffraction analyses demonstrated that helicid had been totally converted into an amorphous state in the zein matrix microparticles. Attenuated total reflectance Fourier transform infrared analysis disclosed that the hydrogen bonding presented between helicid and zein molecules. In vitro dissolution tests verified that the microparticles were able to provide a fine sustained drug release profile. The present study provides an easy way to develop novel biomaterials for drug delivery and for providing sustained drug release profiles.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1181 ◽  
Author(s):  
Somayeh Rezaei ◽  
Soheila Kashanian ◽  
Yadollah Bahrami ◽  
Luis J. Cruz ◽  
Marjan Motiei

Novel reduction-responsive hyaluronic acid–chitosan–lipoic acid nanoparticles (HACSLA-NPs) were designed and synthesized for effective treatment of breast cancer by targeting Cluster of Differentiation 44 (CD44)-overexpressing cells and reduction-triggered 17α-Methyltestosterone (MT) release for systemic delivery. The effectiveness of these nanoparticles was investigated by different assays, including release rate, 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT), lactate dehydrogenase (LDH), caspase-3 activity, Rhodamine 123 (RH-123), and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). In vitro experiments revealed that Methyltestosterone/Hyaluronic acid–chitosan–lipoic acid nanoparticles (MT/HACSLA-NPs) illustrated a sustained drug release in the absence of glutathione (GSH), while the presence of GSH led to fast MT release. HACSLA-NPs also showed high cellular internalization via CD44 receptors, quick drug release inside the cells, and amended cytotoxicity against positive CD44 BT-20 breast cancer cell line as opposed to negative CD44, Michigan Cancer Foundation-7 (MCF-7) cell line. These findings supported that these novel reduction-responsive NPs can be promising candidates for efficient targeted delivery of therapeutics in cancer therapy.


Author(s):  
Vipan Kumar Kamboj ◽  
Prabhakar Kumar Verma

Objective: The objective of this study was to prepare and evaluate metformin nanoparticles (MN) using stearic acid-coupled F127 (SAF127) copolymer and polyvinyl alcohol by emulsion solvent evaporation technique.Method: Metformin is the first-line drug for the treatment of type II diabetes mellitus belongs to Biopharmaceutical Classification System Class III. The prepared MN was characterized for particle size, polydispersity index (PDI), zeta potential, drug entrapment, percentage yield, in vitro drug release, and stability studies. The compatibility studies were performed by Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). The crystallographic and surface properties were studied by X-ray diffractometry and scanning electron microscopy, respectively.Results: The mean particle diameter of prepared nanoparticles ranged from 207.8 to 977.64 nm, PDI value ranged from 0.146 to 0.694, and zeta potential ranged from −20.5 to −6.97 mV. The drug entrapment efficiency of these nanoparticles varies between 18.81 to 69.01 %. The drug to SAF127 copolymer (10/30 w/w) ratio (MN3) showed optimum results. The MN3 had spherical morphology with semi-amorphous nature. The results of FTIR and DSC analysis showed that there was no significant interaction between drug and excipients. The prepared polymeric nanoparticles were stable at 5±3°C up to 3 months. In vitro release of drug from MN3 was 20.52% in the first 1 h and remaining drug was released up to 30 h.Conclusion: The results of this study confirmed the sustained drug release profile of metformin loaded SAF127 copolymer nanoparticles. These nanoparticles can be best stored up to 3 months.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amit Kumar Nayak ◽  
Dilipkumar Pal ◽  
Kousik Santra

The current study deals with the development and optimization of ispaghula (Plantago ovata F.) husk mucilage- (IHM-) alginate mucoadhesive beads containing glibenclamide by ionotropic gelation technique. The effects of sodium alginate (SA) to IHM and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %), as well as cumulative drug release after 10 hours (R10 h, %), were optimized using 32 factorial design based on response surface methodology. The observed responses were coincided well with the predicted values by the experimental design. The optimized mucoadhesive beads exhibited 94.43±4.80% w/w of DEE and good mucoadhesivity with the biological membrane in wash-off test and sustained drug release profile over 10 hours. The beads were also characterized by SEM and FTIR analyses. The in vitro drug release from these beads was followed by controlled release (zero-order) pattern with super case-II transport mechanism. The optimized glibenclamide-loaded IHM-alginate mucoadhesive beads showed significant antidiabetic effect in alloxan-induced diabetic rats over prolonged period after oral administration.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


2018 ◽  
Vol 18 (2) ◽  
pp. 302-311
Author(s):  
Shulin Dai ◽  
Yucheng Feng ◽  
Shuyi Li ◽  
Yuxiao Chen ◽  
Meiqing Liu ◽  
...  

Background: Micelles as drug carriers are characterized by their inherent instability due to the weak physical interactions that facilitate the self-assembly of amphiphilic block copolymers. As one of the strong physical interactions, the stereocomplexation between the equal molar of enantiomeric polylactides, i.e., the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), may be harnessed to obtain micelles with enhanced stability and drug loading capacity and consequent sustained release. </P><P> Aims/Methods: In this paper, stereocomplexed micelles gama-PGA-g-PLA micelles) were fabricated from the stereocomplexation between poly(gama-glutamic acid)-graft-PLLA gama-PGA-g-PLA) and poly(gamaglutamic acid)-graft-PDLA gama-PGA-g-PLA). These stereocomplexed micelles exhibited a lower CMC than the corresponding enantiomeric micelles. Result: Furthermore, they showed higher drug loading content and drug loading efficiency in addition to more sustained drug release profile in vitro. In vivo imaging confirmed that the DiR-encapsulated stereocomplexed gama-PGA-g-PLA micelles can deliver anti-cancer drug to tumors with enhanced tissue penetration. Overall, gama-PGA-g-PLA micelles exhibited greater anti-cancer effects as compared with the free drug and the stereocomplexation may be a promising strategy for fabrication of anti-cancer drug carriers with significantly enhanced efficacy.


Sign in / Sign up

Export Citation Format

Share Document