scholarly journals The Effect of Bi-Functionalized MMT on Morphology, Thermal Stability, Dynamic Mechanical, and Tensile Properties of Epoxy/Organoclay Nanocomposites

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2012 ◽  
Author(s):  
Siew Sand Chee ◽  
Mohammad Jawaid

In this work, the optimum filler loading to prepare epoxy/organoclay nanocomposites by the in-situ polymerization method was studied. Bi-functionalized montmorillonite at different filler loading (0.5, 1.0, 2.0, 4.0 wt %) was dispersed in epoxy resin by using a high shear speed homogenizer. The effect on morphology, thermal, dynamic mechanical, and tensile properties of the epoxy/organoclay nanocomposites were studied in this work. Wide-angle X-ray scattering (WAXS) and field emission scanning electron microscope (FESEM) studies revealed that possible intercalated structures were obtained in epoxy/organoclay nanocomposites. Thermogravimetric analysis (TGA) shows that epoxy/organoclay nanocomposites exhibit higher thermal stability at the maximum and final decomposition temperature, as well as higher char content, compared to pristine epoxy. The dynamic mechanical analysis (DMA) indicate that storage modulus (E′), loss modulus (E″), cross-link density and glass transition temperature (Tg) of the nanocomposites were improved with organoclay loading up to 1 wt %. Beyond this loading limit, the deterioration of properties was observed. A similar trend was also observed on tensile strength and modulus. We concluded from this study that organoclay loading up to 1 wt % is suitable for further study to fabricate hybrid nanocomposites for various applications.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 700
Author(s):  
Muhamad Hasfanizam Mat Yazik ◽  
Mohamed Thariq Hameed Sultan ◽  
Mohammad Jawaid ◽  
Abd Rahim Abu Talib ◽  
Norkhairunnisa Mazlan ◽  
...  

The aim of the present study has been to evaluate the effect of hybridization of montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNT) on the thermal and viscoelastic properties of shape memory epoxy polymer (SMEP) nanocomposites. In this study, ultra-sonication was utilized to disperse 1%, 3%, and 5% MMT in combination with 0.5%, 1%, and 1.5% MWCNT into the epoxy system. The fabricated SMEP hybrid nanocomposites were characterized via differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The storage modulus (E’), loss modulus (E”), tan δ, decomposition temperature, and decomposition rate, varied upon the addition of the fillers. Tan δ indicated a reduction of glass transition temperature (Tg) for all the hybrid SMEP nanocomposites. 3% MMT/1% MWCNT displayed best overall performance compared to other hybrid filler concentrations and indicated a better mechanical property compared to neat SMEP. These findings open a way to develop novel high-performance composites for various potential applications, such as morphing structures and actuators, as well as biomedical devices.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


2018 ◽  
Vol 280 ◽  
pp. 422-430
Author(s):  
M.S. Zakaria ◽  
Che Mohd Ruzaidi Ghazali ◽  
Kamarudin Hussin ◽  
Mohd Kahar A. Wahab ◽  
K.A. Abdul Halim ◽  
...  

The effects of palm waste (palm slag and palm ash) filled thermoplastic (high density polyethylene (HDPE) and recycled HDPE (rHDPE)) composites on dynamic mechanical analysis were examined. Two different particle size (150 μm – 300 μm) as coarse size and (≤ 75 μm) as fine size were used in this study. The palm waste of HDPE and rHDPE with 8 different types of sample were prepared using a twin screw extruder. 10 % of filler loading was chosen to produce the composite. The DMA result indicated that the fine size palm ash and coarse size palm slag have highest storage modulus incorporated with rHDPE composite meanwhile the effect of palm slag incorporated with HDPE also shown the similar findings as palm ash incorporated with HDPE. The loss modulus indicated that the coarse size of palm slag shows the lowest value and virgin HDPE gained the highest value after 90 °C in HDPE composite meanwhile fine size of palm ash and coarse size of palm slag both indicates the highest value when incorporated with rHDPE composite. For tan δ there are no significant differences recorded between the palm waste filled HDPE composite where virgin HDPE show the highest value. Meanwhile coarse size palm slag composite recorded the nearly identical tan δ value of rHDPE as the highest filled rHDPE composite. Conclusively, fine size palm ash and coarse size palm slag show the better viscoelastic properties in rHDPE composite.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2961 ◽  
Author(s):  
S. Mohd Izwan ◽  
S.M. Sapuan ◽  
M.Y.M. Zuhri ◽  
A.R. Mohamed

This research was performed to evaluate the mechanical and thermal properties of sugar palm fiber (SPF)- and kenaf fiber (KF)-reinforced polypropylene (PP) composites. Sugar palm/kenaf was successfully treated by benzoylation treatment. The hybridized bio-composites (PP/SPF/KF) were fabricated with overall 10 weight percentage (wt%) relatively with three different fibers ratios between sugar palm-treated and kenaf-treated (7:3, 5:5, 3:7) and vice versa. The investigations of thermal stability were then carried out by using diffraction scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The result of a flammability test showed that the treated hybrid composite (PP/SPF/KF) was the specimen that exhibited the best flammability properties, having the lowest average burning rate of 28 mm/min. The stiffness storage modulus (E’), loss modulus (E”), and damping factor (Tan δ) were examined by using dynamic mechanical analysis (DMA). The hybrid composite with the best ratio (PP/SPF/KF), T-SP5K5, showed a loss modulus (E”) of 86.2 MPa and a damping factor of 0.058. In addition, thermomechanical analysis (TMA) of the studies of the dimension coefficient (µm) against temperature were successfully recorded, with T-SP5K5 achieving the highest dimensional coefficient of 30.11 µm at 105 °C.


2020 ◽  
Vol 13 (3) ◽  
Author(s):  
Shailesh D. Ambekar ◽  
Vipin K. Tripathi

The aim of the study is to do an experimental analysis and investigation of visco-elastic behaviour of CFRP hybrid nanocomposites, which contains the small percentage of nanoclay and nanoZnO particles mixed for the improvement in the various properties of the CFRP composites. Also there is try to focus on the combined effect of another variable, i.e., fiber angle of orientation along with changing the percentage of nano particles.A hand layup method followed by process of vacuum bagging was used to make the samples of composite. Dynamic mechanical analyzer (DMA) was used to inspect the dynamic mechanical properties of CFRP hybrid nanocomposite specimens with changing temperature. The OVAT analysis is carried out for three mentioned variables and studied effect of variables on the various visco elastic properties like flexural storage modulus, loss modulus, Glass transition temperature and tan etc. It is found that due to the presence of nano particles there is tremendous change in the value of storage modulus ,it gets almost doubled, i.e., 200%because of the presence of nano particles. The experimental result also shows the positive effect on the loss modulus because of the nano particle contribution .Similarly there is considerable change in GTT(Glass transmission temperature) and change in length in DMA (Dynamic mechanical analysis ).


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2014 ◽  
Vol 699 ◽  
pp. 239-244 ◽  
Author(s):  
Nurhidayah R. Zamani ◽  
Aidah Jumahat ◽  
Rosnadiah Bahsan

In this study, Dynamic Mechanical Analyzer (DMA) was used to study the effect of nanoparticles, which is nanosilica, on glass transition temperature (Tg) of epoxy polymer. A series of epoxy based nanosilica composite with 5-25 wt% nanosilica content was prepared using mechanical stirring method. The weight fractions of nanosilica in epoxy were 5 wt%, 13 wt% and 25 wt%. 30mm x 10mm x 3mm size specimens were tested using DMA machine from room temperature up to 180oC at 2°C/min heating rate. From the analysis of the results, dynamic modulus and glass transition temperature of pure polymer and nanosilica filled polymer were obtained. The glass transition of a polymer composite is a temperature-induced change in the matrix material from the glassy to the rubbery state during heating or cooling. Glass transition temperature Tg was determined using several method: storage modulus onset, loss modulus peak, and tan δ peak. The results showed that the presence of nanosilica reduced Tg of epoxy polymer.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1295
Author(s):  
Laura O’Donoghue ◽  
Md. Haque ◽  
Sean Hogan ◽  
Fathima Laffir ◽  
James O’Mahony ◽  
...  

The α-relaxation temperatures (Tα), derived from the storage and loss moduli using dynamic mechanical analysis (DMA), were compared to methods for stickiness and glass transition determination for a selection of model whey protein concentrate (WPC) powders with varying protein contents. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC), and stickiness behavior was characterized using a fluidization technique. For the lower protein powders (WPC 20 and 35), the mechanical Tα determined from the storage modulus of the DMA (Tα onset) were in good agreement with the fluidization results, whereas for higher protein powders (WPC 50 and 65), the fluidization results compared better to the loss modulus results of the DMA (Tα peak). This study demonstrates that DMA has the potential to be a useful technique to complement stickiness characterization of dairy powders by providing an increased understanding of the mechanisms of stickiness.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1283 ◽  
Author(s):  
Miao Miao ◽  
Chunyan Wei ◽  
Ying Wang ◽  
Yongfang Qian

To improve the interfacial bonding and thermal stability of graphene oxide (GO)/polypropylene (PP) composite fibers, a composite fiber with PP as the matrix, GO as reinforcement and maleic anhydride-grafted PP (PP-g-MAH) as a compatibilizer was prepared by a simple and efficient melt-blending method. The GO content was 0.0–5.0 wt %. According to the Fourier Transform Infrared (FT-IR) spectroscopy results, the interfacial bonding in the PP/MAH/GO composite fibers was improved. The Dynamic Mechanical Analysis (DMA) results show that the addition of GO resulted in better interfacial adhesion and higher storage modulus (E′). The loss modulus (E′′) of the PP/MAH/GO-x composite fibers increased with increasing amount of added GO, whereas the loss factor (tan δ) decreased. GO and PP-g-MAH were analyzed by Thermogravimetric Analysis (TGA). The thermal stability of the composite fibers was improved compared to PP. Differential Scanning Calorimetry (DSC) analysis showed that the addition of PP-g-MAH to the composite fiber improved the interfacial bonding of GO in the PP matrix. Thus, compatibility between the two components was obtained. Based on the Scanning Electron Microscopy (SEM) results, the PP fibers exhibited relative orientation due to the strong crystalline morphology. The rough section, PP/GO blend fiber exhibits a very clear phase separation morphology due to the incompatibility between the two and the compatibility of GO and PP in PP/MAH/GO-3 composite fiber is improved, resulting in the interface between the two has improved.


2011 ◽  
Vol 179-180 ◽  
pp. 449-454
Author(s):  
Dong Bing Geng ◽  
Hong Jun Guo ◽  
San Qing Zhang

In this paper, a new method that has shown significant potential to characterize lightning strikes damage which is couple with dynamic mechanical analysis. The composite samples used in this work are based on carbon fiber/bismaleimide system. The analysis of the dynamic mechanical data demonstrate the glass transition temperature of the composites increased as a function of increasing lightning current , simultaneity with the presence ofpotential damage, whichare result in higher network cross-link density and the incipent degradation of the polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document