scholarly journals A Novel Electroactive Imide Oligomer and Its Application in Anticorrosion Coating

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 91 ◽  
Author(s):  
Bi-Sheng Huang ◽  
Guan-Hui Lai ◽  
Ta-I Yang ◽  
Mei-Hui Tsai ◽  
Yi-Chen Chou

A novel aniline tetramer (AT) capped electroactive imide oligomer (EIO) for metal corrosion protection was successfully synthesized in this study. The chemical structure of the EIO was characterized by liquid chromatography-mass spectrometry and Fourier-transform infrared spectroscopy. Furthermore, the redox behavior of EIO was identified using electrochemical cyclic voltammetry studies. An EIO coated on a cold-rolled steel (CRS) electrode was found to possess superior corrosion resistance to polyimide (PI) on a series of electrochemical corrosion measurements in 3.5 wt.% NaCl solution over an extended period (30 days). The mechanism for the advanced corrosion protection of the PI coating on the CRS electrode could be attributed to the redox catalytic capabilities of the AT units present in the EIO. These capabilities may induce the formation of passive metal oxide layers on the CRS electrode. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to analyze the surface condition of the CRS after the corrosion test. EIO- and PI-coated electrodes were identified by a series of electrochemical measurements, including corrosion potential (Ecorr), polarization resistance (Rp), and corrosion current (Icorr) measurements, along with electrochemical impedance spectroscopy (EIS).

2020 ◽  
Vol 62 (8) ◽  
pp. 803-808
Author(s):  
Wei Yan

Abstract Applied mechanical stress could accelerate the chemical or electrochemical process of metal corrosion in weak acid solution. Series of experimental tests were conducted in this research. The results show that there is no obvious correlation between OCP (open circuit potential) values and applied stresses. However, The LPR (linear polarization resistance)corrosion rate increased intensively under the applied stress of 400 MPa. Correspondingly, the EIS (electrochemical impedance spectroscopy) Nyquist diagrams show that all of the plots contain a semicircle over the whole frequency range and the semicircle size decreased with increasing applied stress. The real-time corrosion current square waves triggered by the mechanical stress were successfully monitored by using the potentiostatic method in CO2 saturated brine under 200 mv (above OCP), flow and lower pH condition. This result is significant for many research fields, such as petrochemistry, aerospace and nuclear industries, which suffer weak acid corrosive environment.


2021 ◽  
Vol 904 ◽  
pp. 519-524
Author(s):  
Gui Yun Zhang ◽  
Yong Wang ◽  
Tian Wei Zhang ◽  
Chen Yu Zhao

Sea water resources are extensive and can be used to extinguish fires, but their corrosiveness is a major problem. Using the method of electrochemical workstation, the electrochemical corrosion behavior of aluminum sheet in artificial sea water solution and silica-coated artificial seawater was studied; by analyzing the surface morphology, polarization curve and electrochemical impedance spectroscopy, the electrochemical corrosion behavior of aluminum sheets under different immersion times and different immersion media is obtained. The conclusion is that the coating of nanosilica powder has a certain corrosion protection effect on artificial seawater.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ming Liu ◽  
Jun Li ◽  
Danping Li ◽  
Lierui Zheng

Purpose At present, carbonated drinks such as cola are especially favored by the younger generation. But because of its acid, it often leads to tooth demineralization, resulting in “cola tooth”. However, the influence of cola on the corrosion resistance of passive film of TiA10 alloy restorative materials is rarely reported. The purpose of this study was to analysis the corrosion resistance, composition of the passive film of TA10 alloy in different concentrations of Cola. Design/methodology/approach The passive behavior of TA10 alloy in artificial saliva (AS) and Cola was studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, cyclic voltammetry, Mott-Schottky techniques and combined with X-ray photoelectron spectroscopy and Auger electron spectroscopy (AES) surface analysis. Findings With the increase of cola content, the self-corrosion current density of the alloy increases sharply, and the corrosion resistance of the passive film is the best in AS, while Rp in cola is reduced to half of that in AS. The thickness of the passive film in AS, AS +cola and cola is about 9.5 nm, 7.5 nm and 6 nm, respectively. The passive film in cola has more defects and the carrier density is 1.55 times as high as that in AS. Cola can weaken the formation process of the protected oxide, promote the formation of high valence Ti-oxides and increase the content of Mo-oxides in the passive film. Originality/value These results have important guiding significance for the safe use of the alloy in the complex oral environments.


2010 ◽  
Vol 123-125 ◽  
pp. 1255-1258
Author(s):  
Chih Wei Peng ◽  
Jui Ming Yeh

Electroactive polyurethane (EPU) containing conjugated segments of electroactive amino-capped aniline trimer (ACAT) has been successfully synthesized and characterized through Fourier-Transformation infrared and UV–visible absorption spectroscopy. Subsequently, electroactivity (i.e., redox capability) of as-prepared EPU was investigated by electrochemical cyclic voltammetry (CV) studies. It was noticed that the as-prepared EPU exhibited reversible redox capability was found to reveal better corrosion protection effect on cold-rolled steel (CRS) electrodes than that of non-electroactive polyurethane based on a series of electrochemical measurements such as corrosion potential, polarization resistance, corrosion current and electrochemical impedance spectroscopy (EIS) studies in 5 wt-% NaCl electrolyte. This significant enhancement of corrosion protection on CRS electrodes as compared to non-electroactive polyurethane might be probably ascribed to the redox catalytic property of as-prepared EPU coatings inducing the formation of passive layer of metal oxide, as evidenced by the SEM and ESCA studies.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 986
Author(s):  
Shenghan Zhang ◽  
Chenhao Sun ◽  
Jie Di ◽  
Yu Tan

Passive films were formed on A508-3 steel (A508-3), 304L stainless steel (304L) and Incoloy 800 (In800) with blank/zinc/zinc–aluminum treatments in air at 300 °C. The electrochemical corrosion behaviors of different metals were investigated through potentiodynamic polarization, electrochemical impedance spectroscopy and the Mott–Schottky technique. The morphology and composition of passive films were analyzed using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The zinc–aluminum treatment effectively reduced the corrosion current and increased the impedance of A508-3 and 304L, but had a weak effect on In800. The zinc–aluminum treatment reduced the carrier concentration of A508-3 and changed the semiconductor property of 304L and In800. The order of zinc–aluminum treatment for improving the corrosion resistance of three metals was: A508-3 > 304L > In800. In addition, the zinc–aluminum treatment enhanced the density and smoothness of passive films. According to the composition analysis, spinel ZnAl2O4 was formed on three metals; however, the amount of spinel varied with the content of nickel and chromium in different metals, which affected the results of using this technology.


2007 ◽  
Vol 22 (9) ◽  
pp. 2573-2581 ◽  
Author(s):  
Udit Surya Mohanty ◽  
Kwang-Lung Lin

The electrochemical corrosion behavior of Sn–XAg–0.5Cu alloys in 3.5% NaCl solution was examined using potentiodynamic polarization techniques. The Ag content in the alloy was varied from 1 to 4 wt%. The polarization curves obtained for the alloys show an active–passive transition followed by a transpassive region. Sn–XAg–0.5Cu alloys with higher Ag content (>2 wt%) show a strong tendency toward passivation. The passivation behavior has been ascribed to the presence of both SnO and SnO2on the anode surface. Increase in Ag content from 1 to 4 wt% results in a decrease in the corrosion-current density (Icorr) and linear polarization resistance (LPR) of the alloy. Nevertheless, the corrosion potential (Ecorr) shifts toward negative values, and a decrease in corrosion rate is observed. The presence of Cl−ion initiates pitting and is responsible for the rupture of the passive layer at a certain breakdown potential. The breakdown potential (EBR) decreases and shifts toward more noble values with increase in Ag content in the alloy. Surface analyses by x-ray photoelectron spectroscopy (XPS) and Auger depth profile studies confirmed the formation of both Sn(II) and Sn(IV) oxides in the passive layer.


CORROSION ◽  
10.5006/3760 ◽  
2021 ◽  
Author(s):  
Thanyalux Wanotayan ◽  
Tongjai Chookajorn ◽  
Sirikarn Sattawitchayapit ◽  
Piya Khamsuk ◽  
Kanokwan Saengkiettiyut ◽  
...  

The effects of alkaline non-cyanide zinc plating bath formulation on the plating characteristics and deposit properties are investigated. Scanning electron microscope and X-ray diffractometer are used to study the surface morphology and texture of the zinc deposits respectively. Uniform and compact coatings with a dominant (110) texture are obtained for all of the bath formulations. Nevertheless, significant differences in surface morphology and relative preferences for the (110) and (100) planes were found to result from the concentrations of zinc and sodium hydroxide in the bath. Electrochemical impedance spectroscopy and potentiodynamic polarization scan were employed to evaluate the corrosion resistance. The coatings with a moderate Zn (8-11 g/L) and controlled NaOH (120 g/L) contents show good corrosion resistance, with the corrosion current and corrosion rate being the lowest at 8 g/L of Zn and 120 g/L of NaOH. The ratio of texture coefficient, morphology, and compressive residual stress from different bath composition contribute to the corrosion resistant property. The findings from this work should provide useful information of electrogalvanized zinc coatings with enhanced corrosion resistance.


2011 ◽  
Vol 311-313 ◽  
pp. 996-1000 ◽  
Author(s):  
Jing Xu ◽  
Jian Wei Yang ◽  
Jian Ping Cao ◽  
Chen Chen

The corrosion behavior of X70 pipeline steel in 0.5% NaC1 solution in different temperature of 25°C、35°C and 55°C was studied by dynamic potential polarization curve and electrochemical impedance spectroscopy(EIS)method. The corrosion topography of X70 pipeline steel in normal temperature and 30°C was also compared in immersion corrosion test after 25 days. The results show that when the temperature rises, the corrosion current density Icorr increases, the linear polarization resistance reduces, cathode polarization curve right shift, caused corrosion rate increases which primarily by the increasing the transmission of reactant in the cathode reaction. Pitting corrosion developed after 25 days immersion corrosion in 30°C solution which proved the promoter action of temperature to pit corrosion, and which is agreed with the electrochemical corrosion test results.


2011 ◽  
Vol 189-193 ◽  
pp. 838-841 ◽  
Author(s):  
Jun Jun Zhang ◽  
Dong Han ◽  
Wen Fang Li ◽  
Jun Du

In this work, the green chemistry conversion coating on 6063 aluminium alloy surface was made and studied by means of (NH4)2Ce(NO3)6-H2O2 as inhibitor, HF-FeCl3 as accelerator. The coating was evaluated in 3.5% NaCl at room temperature by using polarization curve and electrochemical impedance spectroscopy (EIS). The results show the corrosion current density and the conversion coating resistance, for the untreated or treated alloy, are 1.566 uA•cm-2 and 6.621kΩ cm2, 0.0545 uA•cm-2 and 208.56 kΩ cm2 respectively. It indicates the (NH4)2Ce(NO3)6-H2O2 treated surface presents better corrosion behaviour in chloride media than the original material surface. The morphologies, composition and valence state of the coating were examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The result indicates that the Ce-Mn conversion coating was made on aluminium alloy surface.


2006 ◽  
Vol 21 (1) ◽  
pp. 62-70 ◽  
Author(s):  
B.Y. Wu ◽  
Y.C. Chan ◽  
M.O. Alam ◽  
W. Jillek

This paper presents an investigation on the corrosion behavior of five solders by means of polarization and electrochemical impedance spectroscopy (EIS) measurements. The Sn–9Zn and Sn–8Zn–3Bi solder, in comparison with the Sn–3.5Ag–0.5Cu and Sn–3.5Ag–0.5Cu–9In solder, were tested in 3.5 wt% NaCl solution and 0.1 wt% adipic acid solution, respectively. The Sn–37Pb solder was for reference in this work. The polarization curves indicated that the Sn–9Zn and Sn–8Zn–3Bi solder showed the worst corrosion resistance both in the salt and acid solutions, in terms of corrosion-current density, corrosion potential, linear polarization resistance, and passivation-current density. Meanwhile, the Sn–3.5Ag–0.5Cu solder remained the best corrosion characteristics in both solutions. It was found that due to microstructure alteration, Bi additive to the Sn–9Zn solder improved the corrosion behavior in the salt solution, whereas decreased that in the acid solution. However, the additive of In degraded the Sn–3.5Ag–0.5Cu solder in both solutions. The EIS results agreed well with the noble sequence of the five solders subjected to the two solutions with polarization. The equivalent circuits were also determined. Nevertheless, the four Pb-free solders exhibited acceptable corrosion properties since there was not much difference of key corrosion parameters between them and the Sn–37Pb solder.


Sign in / Sign up

Export Citation Format

Share Document