scholarly journals Phase Behavior and Thermo-Mechanical Properties of IF-WS2 Reinforced PP–PET Blend-Based Nanocomposites

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2342
Author(s):  
Ding Chen ◽  
Santosh K. Tiwari ◽  
Zhiyuan Ma ◽  
Jiahao Wen ◽  
Song Liu ◽  
...  

The industrial advancement of high-performance technologies directly depends on the thermo-mechanical properties of materials. Here we give an account of a facile approach for the bulk production of a polyethylene terephthalate (PET)/polypropylene (PP)-based nanocomposite blend with Inorganic Fullerene Tungsten Sulfide (IF-WS2) nanofiller using a single extruder. Nanofiller IF-WS2 was produced by the rotary chemical vapor deposition (RCVD) method. Subsequently, IF-WS2 nanoparticles were dispersed in PET and PP in different loadings to access impact and their dispersion behavior in polymer matrices. As-prepared blend nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic differential scanning (DSC), dynamic mechanical analysis (DMA), and X-ray diffraction (XRD). In this work, the tensile strength of the PP/PET matrix with 1% IF-WS2 increased by 31.8%, and the thermal stability of the sample PP/PET matrix with 2% increased by 18 °C. There was an extraordinary decrease in weight loss at elevated temperature for the nanocomposites in TGA analysis, which confirms the role of IF-WS2 on thermal stability versus plain nanocomposites. In addition, this method can also be used for the large-scale production of such materials used in high-temperature environments.

2017 ◽  
Vol 54 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Maria Adina Vulcan ◽  
Celina Damian ◽  
Paul Octavian Stanescu ◽  
Eugeniu Vasile ◽  
Razvan Petre ◽  
...  

This paper deals with the synthesis of polyurea and its use as polymer matrix for nanocomposites reinforced with multi-walled carbon nanotubes (MWCNT). Two types of materials were obtained during this research, the first cathegory uses the polyurea as matrix and the second one uses a mixture between epoxy resin and polyurea. The nanocomposites were characterized by Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM) and Tensile Tests .The elastomeric features of nanocomposites were highlighted by the results which showed low value of Tg. Also higher thermal stability with ~40oC compared with commercial products (M20) were observed, but lower mechanical properties compared to neat polyurea.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Ning ◽  
Maoyang Xia ◽  
Dong Wang ◽  
Xin Feng ◽  
Hong Zhou ◽  
...  

Abstract Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.


2018 ◽  
Vol 38 (10) ◽  
pp. 933-943 ◽  
Author(s):  
Junping Zhou ◽  
Ruifang Wang ◽  
Xiaojia He ◽  
Chunxia Zhao ◽  
Haolan Gou ◽  
...  

AbstractThe mechanical properties of polybenzoxazine (PBa) resins were improved by adding polyamide 12 (PA12) and modified montmorillonite (OMMT) as additives. The mechanical properties and thermal stability of PBa and resulting PBa composites were investigated using an Instron universal material testing instrument and dynamic mechanical analysis. The morphologies of the fracture surfaces were characterized by scanning electron microscopy. The results of morphological studies showed that PBa/PA12/OMMT composites exhibit significantly improved mechanical properties and thermal stability compared with that of the pristine PBa. When the OMMT content increased to 1 wt%, the fracture toughness (1.36 MPa·m1/2) and the fracture energy (GIC, 315.76 J·m−2) of PBa/PA12/OMMT-1 composites increased by 67.9% and 181.4%, respectively, compared with those of the pristine PBa. The thermal stability properties demonstrated that the storage modulus and glass transition temperature (Tg) of PBa/PA12/OMMT composites gradually increased with the addition of OMMT particles. The scanning electron microscopy results indicated that PBa/PA12/OMMT composites possess a toughening mechanism of crack deflection, with a large bulk of voids and debonding induced by PA12 and OMMT clay particles. Moreover, the OMMT might provide microvoid nucleating sites at its surface to release constrains for shear yielding.


2020 ◽  
Vol 16 ◽  
Author(s):  
Asma S. Algebaly ◽  
Afrah E. Mohammed ◽  
Mudawi M. Elobeid

Introduction: Fabrication of iron nanoparticles (FeNPs) has recently gained a great concern for their varied applications in remediation technologies of the environment. Objective: The current study aimed to fabricate iron nanoparticles by green technology approach using different plant sources, Azadirachta indica leaf and Calligonum comosum root following two extraction methods. Methods: Currently, a mixture of FeCl2 and FeCl3 was used to react with the plant extracts which are considered as reducing and stabilizing agents for the generation of FeNPs in one step. Different techniques were used for FeNPs identification. Results: Immediately after mixing of the two reaction components, the color changed to dark brown as an indication of safe conversion of Fe ions to FeNPs, that later confirmed by zeta sizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). FeNPs fabricated by C. comosum showed smaller size when compared by those fabricated by A. indica. Using both plant sources, FeNPs fabricated by the aqueous extract had smaller size in relation to those fabricated by ethanolic extract. Furthermore, antibacterial ability against two bacterial strains was approved. Conclusion: The current results indicated that, at room temperature plant extracts fabricated Fe ion to Fe nanoparticles, suggesting its probable usage for large scale production as well as its suitability against bacteria. It could also be recommended for antibiotic resistant bacteria.


2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87013-87020 ◽  
Author(s):  
Kaiju Luo ◽  
Yan Wang ◽  
Junrong Yu ◽  
Jing Zhu ◽  
Zuming Hu

Aromatic furanic polyamides with relatively high molecular weight were synthesized, and good thermal stability and mechanical properties were demonstrated.


2003 ◽  
Vol 789 ◽  
Author(s):  
Seung Yong Bae ◽  
Hee Won Seo ◽  
Jeunghee Park

ABSTRACTVarious shaped single-crystalline gallium nitride (GaN) nanostructures were produced by chemical vapor deposition method in the temperature range of 900–1200 °C. Scanning electron microscopy, transmission electron microscopy, electron diffraction, x-ray diffraction, electron energy loss spectroscopy, Raman spectroscopy, and photoluminescence were used to investigate the structural and optical properties of the GaN nanostructures. We controlled the GaN nanostructures by the catalyst and temperature. The cylindrical and triangular shaped nanowires were synthesized using iron and gold nanoparticles as catalysts, respectively, in the temperature range of 900 – 1000 °C. We synthesized the nanobelts, nanosaws, and porous nanowires using gallium source/ boron oxide mixture. When the temperature of source was 1100 °C, the nanobelts having a triangle tip were grown. At the temperature higher up to 1200 °C the nanosaws and porous nanowires were formed with a large scale. The cylindrical nanowires have random growth direction, while the triangular nanowires have uniform growth direction [010]. The growth direction of the nanobelts is perpendicular to the [010]. Interestingly, the nanosaws and porous nanowires exhibit the same growth direction [011]. The shift of Raman, XRD, and PL bands from those of bulk was correlated with the strains of the GaN nanostructures.


2002 ◽  
Vol 726 ◽  
Author(s):  
Van Nhan Nguyen ◽  
François Xavier Perrin ◽  
Jean-Louis Vernet

AbstractMetal-oxide ceramer films have been developed using an acrylic polymer bearing a low amount of methacrylic acid units (ca. 4%mol) as the organic phase with titanium tetrabutoxide as the inorganic sol-gel precursor. The characterisation of free films was realized by various experimental methods. The formation of COOTi bonds prevents large scale phase separation between the organic component and the mineral network. Mechanical properties of the hybrid films have been investigated through dynamic mechanical analysis. The influence of the titania content on the damping peak amplitude suggests that titania is molecularly dispersed in the polymer matrix and that it significantly hinders the segmental motion of the polymer chains. However, the low content in potential carboxylic crosslinking sites explains why the glass transition temperature remains relatively unchanged when titania content increases. Vickers microhardness measurements used in this study allowed us to understand the contribution of the inorganic part (phase TiO2) to the mechanical properties of the polymer. The creep of hybrids has been studied carrying out hardness measurements under various indentation times. The mineral constituent leads to an important increase of the hardness and limits, in a significant way, the creep of polymer.


2003 ◽  
Vol 776 ◽  
Author(s):  
Jean-Christophe P. Gabriel

AbstractWe report our work on the fabrication of nanotube-based field effect transistors (NTFET). Nanotubes were grown by chemical vapor deposition using various approaches, including a new formulation of nanotube growth catalysts that were directly patterned using UV lithography. We also report NTFETs based on randomly oriented nanotube networks that have a modulation of one. Finally, we report that a systematical and statistical characterization of millions of devices has led to the development of a robust process that may be useful in large scale production of reproducible, nanotube-based FETs, which, in turn, can be used as a generic platform for chemical sensors.


Sign in / Sign up

Export Citation Format

Share Document