scholarly journals Physical and Chemical Properties Characterization of 3D-Printed Substrates Loaded with Copper-Nickel Nanowires

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2680
Author(s):  
Ely Dannier V-Niño ◽  
Quentin Lonne ◽  
Andrés Díaz Lantada ◽  
Enrique Mejía-Ospino ◽  
Hugo Armando Estupiñán Durán ◽  
...  

This study deals with the laser stereolithography manufacturing feasibility of copper-nickel nanowire-loaded photosensitive resins. The addition of nanowires resulted in a novel resin suitable for additive manufacturing technologies based on layer-by-layer photopolymerization. The pure and nanowire-loaded resin samples were 3D printed in a similar way. Their morphological, mechanical, thermal, and chemical properties were characterized. X-ray computed tomography revealed that 0.06 vol % of the composite resin was filled with nanowires forming randomly distributed aggregates. The increase of 57% in the storage modulus and 50% in the hardness when loading the resin with nanowire was attributed to the load transfer. Moreover, the decrease in the glass transition temperature from 57.9 °C to 52.8 °C in the polymeric matrix with nanowires evidenced a decrease in the cross-linking density, leading to a higher mobility of the polymer chains during glass transition. Consequently, this research demonstrates the successful dispersion and use of copper-nickel nanowires as a reinforcement material in a commercial resin for laser stereolithography.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 986 ◽  
Author(s):  
Denesh Mohan ◽  
Nur Fatin Khairullah ◽  
Yan Ping How ◽  
Mohd Shaiful Sajab ◽  
Hatika Kaco

Drug delivery constitutes the formulations, technologies, and systems for the transport of pharmaceutical compounds to specific areas in the body to exert safe therapeutic effects. The main criteria for selecting the correct medium for drug delivery are the quantity of the drug being carried and the amount of time required to release the drug. Hence, this research aimed to improve the aforementioned criteria by synthesizing a medium based on calcium carbonate-nanocellulose composite and evaluating its efficiency as a medium for drug delivery. Specifically, the efficiency was assessed in terms of the rates of uptake and release of 5-fluorouracil. Through the evaluation of the morphological and chemical properties of the synthesized composite, the established 3D printing profiles of nanocellulose and CaCO3 took place following the layer-by-layer films. The 3D printed double laminated CaCO3-nanocellulose managed to release the 5-fluorouracil as an effective single composition and in a time-controlled manner.


2006 ◽  
Vol 514-516 ◽  
pp. 1673-1677 ◽  
Author(s):  
Mathias G. Westphal ◽  
António Sergio Pouzada ◽  
Gean V. Salmoria ◽  
Carlos H. Ahrens

Stereolithography is a rapid manufacturing process that builds objects layer-by-layer based on the photo polymerization of a liquid resin. Due to the good geometric precision, this process has been used in Rapid Tooling for injection moulding. These tools are suitable for the production of short runs of parts and prototypes, where without resorting to the manufacture of a conventional metallic mould. The mechanical and thermal properties of the stereolitography resins, used in the manufacture of hybrid moulds, differ substantially from those of the conventional metallic materials. Particularly they must be known for guaranteeing the structural integrity and the thermal performance of the mould. Also the chemistry behaviour of the resin in contact with the polymer is important when tribological aspects are involved, especially during the ejection of the moulding. In this work, the behaviour of hybrid moulds with SL Vantico 5260 resin moulding cores was assessed. Several thermoplastics (iPP, ABS, PET and PA 6.6) were moulded, and their mechanical, thermal and chemical properties considered and related to the performance of the moulding process. Also, the friction properties of the SL resin in contact with the moulded thermoplastic in moulding conditions were observed and considered in the context of the performance of hybrid moulds.


Author(s):  
Conrad West ◽  
Robert McTaggart ◽  
Todd Letcher ◽  
Douglas Raynie ◽  
Ranen Roy

3D printing offers the opportunity to design and make replacement parts to exacting specifications when needed. This is particularly helpful for space applications where stand-alone replacement mechanisms are required. Samples of 3D-printed polylactic acid (PLA) were subjected with up to 200 kGy of gamma radiation from a Cobalt-60 irradiator. The mechanical responses to destructive testing were successfully modeled with a combination of linear and exponential functions and may be understood given the underlying chemical changes due to said radiation exposures. We find that for doses up to 50 kGy, the performance of 3D-printed PLA is largely unaffected, which is beneficial for applications in space and in medicine. At larger doses, it appears that decomposition processes win out over cross-linking, which may aid in the degradation of PLA in waste streams.


2014 ◽  
Vol 93 ◽  
pp. 82-89 ◽  
Author(s):  
Aryan Azad ◽  
Eul Noh ◽  
Kang Seop Yun ◽  
Hee June Jeong ◽  
Sang Chul Jung ◽  
...  

Hydrogen has unique physical and chemical properties which present benefits and challenges to its successful widespread adoption as a fuel. The photoelectrochemical (PEC) water splitting process with semiconductor metal oxides can be a promising solution to the global energy problem. Although amongst metal oxides Fe2O3 by 2.2 eV bang gap energy is more applicable, for reducing the recombination of electron and hole, Fe was doped into TiO2. In this study Fe2O3/Fe doped TiO2 photocatalysts were compared with Fe-doped TiO2 and TiO2 structures by using layer by layer-self-assemble (LBL-SA) method and dipping process on FTO glass. According to our results the Fe2O3 coated on Fe doped TiO2 /FTO has had best results.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1250 ◽  
Author(s):  
Robert E. Przekop ◽  
Maciej Kujawa ◽  
Wojciech Pawlak ◽  
Marta Dobrosielska ◽  
Bogna Sztorch ◽  
...  

With the development of 3D printing technology, there is a need to produce printable materials with improved properties, e.g., sliding properties. In this paper, the authors present the possibilities of producing composites based on biodegradable PLA with the addition of graphite. The team created composites with the following graphite weight contents: 1%, 2.5%, 5%, 7.5%, and 10%. Neat material was also subjected to testing. Tribological, mechanical, and chemical properties of the mentioned materials were examined. Measurements were also made after keeping the samples in ageing and climatic ovens. Furthermore, SEM observations of samples before and after friction tests were carried out. It was demonstrated that increasing graphite content caused a significant decrease in wear (PLA + 10% graphite had a wear rate three times lower than for a neat material). The addition of graphite did not adversely affect most of the other properties, but it ought to be noted that mechanical properties changed significantly. After conditioning in a climatic oven PLA + 10% graphite has (in comparison with neat material) 11% lower fracture stress, 47% lower impact strength, and 21% higher Young’s modulus. It can be certainly stated that the addition of graphite to PLA is a step towards obtaining a material that is low-cost and suitable for printing sliding spare parts.


2015 ◽  
Vol 1114 ◽  
pp. 121-128
Author(s):  
George Tepes ◽  
Ruxandra Vidu ◽  
Cosmin Mihai Cotrut ◽  
Maria Diana Vranceanu ◽  
Alecs Matei ◽  
...  

During the last decade an increasing number of researchers focused on materials that have at least one dimension in the nanoscale range. That one dimension has immense impact on the physical and chemical properties of the materials, which is mainly due to the large surface to volume ratio. In order to modify the ratio of surface to volume, many shapes can be produced. Each shape is more useful in certain application than in others (e.g. nanowires are more used in sensors then other shapes and nanospheres are more used in medicine).In this paper, nickel nanowires were grown by electrochemical deposition into polycarbonate track etched (PCTE) membrane. The morphology and size of Ni NWs were examined using an Environmental Scanning Electron Microscopy equipped with energy dispersive X-ray spectroscopy.


RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35930-35940 ◽  
Author(s):  
Roberto Paoli ◽  
Maria Bulwan ◽  
Oscar Castaño ◽  
Elisabeth Engel ◽  
J. C. Rodriguez-Cabello ◽  
...  

The control of the morphology, as well as the physical and chemical properties, of nanopores is a key issue for many applications.


2017 ◽  
Vol 888 ◽  
pp. 146-150 ◽  
Author(s):  
Siti Hafizah Mohamad ◽  
Mohd Al Amin Muhamad Nor

The effect addition of Na2O on the solubility properties of phosphate glass of the composition, 45P2O5-18CaO-xNa2O-(34-x)K2O-6Al2O3, where x = 0,5,10,15 and 20 wt. %. has been studied. Glass transition temperature (Tg) of glass samples, weight loss and pH of the immersion solution were measured. The Tg value of the phosphate glass also decreased with the incorporation of Na2O up to 10 wt. % and increased with the incorporation of 15 and 20 wt. %. These results indicates that the solubility and Tg value of phosphate glass were highly influence by the glass composition. The substitution of Na2O to the phosphate glass system with the present of K2O has decrease the solubility of phosphate glass. The released of phosphate and calcium ion seem to decrease with the increasing of Na2O content in the glass composition.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2797
Author(s):  
Jure Žigon ◽  
Mirko Kariž ◽  
Matjaž Pavlič

Surface treatment of 3D-printed objects with coatings, besides protection against environmental influences, offers the improvement of visual appearance of the printed elements. In order to design an optimum surface system, the physical and chemical properties of polymers surfaces should be well-known. In the present study, 3D-printed samples of acrylonitrile-butadiene-styrene, poly(lactic acid) and poly(lactic acid) with wood flour additive were coated with three different types of coating, namely solvent borne alkyd coating, water borne acrylic coating and coating made of acrylonitrile-butadiene-styrene diluted in acetone. The surface properties of substrates and the properties of surface systems were assessed with different methods. The results revealed the surfaces of polymers having hydrophobic character, whereas the color, gloss, surface roughness and coating film thickness of coated surfaces depend on the characteristics of particular coatings. Finally, the adhesion of coatings was shown to be appropriate, but dependent on substrate surface porosity and chemical properties of both substrate surface and coating asset.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomasz Wasiak ◽  
Pyry-Mikko Hannula ◽  
Mari Lundström ◽  
Dawid Janas

Abstract Large amounts of industrial metal containing process and waste solutions are a growing issue. In this work, we demonstrated that they could be transformed into materials of high added values such as copper-nickel nanowires (CuNi NWs) by simple chemical reduction. A thorough investigation of the parameter space was conducted. The microstructure of the obtained material was found tunable depending on the employed concentration of precursor, reducing agent, capping agent, pH, temperature, and reaction time. Moreover, the obtained product had a strong magnetic character, which enabled us to separate it from the reaction medium with ease. The results open new perspectives for materials science by proposing a new type of nanostructure: composite NWs of very promising properties, with metallic elements originating directly from industrial process solution.


Sign in / Sign up

Export Citation Format

Share Document