scholarly journals Mechanical Behaviour of Pin-Reinforced Foam Core Sandwich Panels Subjected to Low Impact Loading

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3627
Author(s):  
Ali Farokhi Farokhi Nejad ◽  
Seyed Saeid Rahimian Rahimian Koloor ◽  
Syed Mohd Saiful Azwan Syed Hamzah ◽  
Mohd Yazid Yahya

As a light structure, composite sandwich panels are distinguished by their significant bending stiffness that is rapidly used in the manufacture of aircraft bodies. This study focuses on the mechanical behaviour of through-thickness polymer, pin-reinforced foam core sandwich panels subjected to indentation and low impact loading. Experimental and computational approaches are used to study the global and internal behaviour of the sandwich panel. The samples for experimental testing were made from glass/polyester laminates as the face sheets and polyurethane foam as the foam core. To further reinforce the samples against bending, different sizes of polymeric pins were implemented on the sandwich panels. The sandwich panel was fabricated using the vacuum infusion process. Using the experimental data, a finite element model of the sample was generated in LS-DYNA software, and the effect of pin size and loading rate were examined. Results of the simulation were validated through a proper prediction compared to the test data. The results of the study show that using polymeric pins, the flexural strength of the panel significantly increased under impact loading. In addition, the impact resistance of the pin-reinforced foam core panel increased up to 20%. Moreover, the size of pins has a significant influence on the flexural behaviour while the sample was under a moderate strain rate. To design an optimum pin-reinforced sandwich panel a “design of experiment model” was generated to predict energy absorption and the maximum peak load of proposed sandwich panels. The best design of the panel is recommended with 1.8 mm face sheet thickness and 5 mm pins diameter.

2021 ◽  
Vol 250 ◽  
pp. 02027
Author(s):  
Ibrahim Elnasri

In this study, we numerically and analytically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effect of boundary conditions on the perforation resistance of the studied graded core sandwich panels was discussed. The simulation results showed that the piercing force– displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with un-clumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions. Finally, an analytical model, taken account only gradient in the quasi-static plateau stress, is developed to predict the top skin pic peak load of the graded sandwich panel.


2021 ◽  
Vol 28 (1) ◽  
pp. 592-604
Author(s):  
Hao Li ◽  
Cong Jiang ◽  
Ye Wu ◽  
Yonghu Huang ◽  
Yun Wan ◽  
...  

Abstract Superelastic shape memory alloy (SMA) as an advanced smart material has been used to improve the impact performance of fiber-reinforced composites in recent decades. Due to the low impact toughness of the thin composite face-sheet and the poor strength of the foam core, sandwich panels are sensitive to the transverse loading. SMA fibers were embedded into the composite laminated to improve the impact resistance of the traditional foam core sandwich panel in this work. Five new types of SMA hybrid panels were prepared, and the testing panels with penetration failure were observed at the impact energy of 50 J. The impact mechanical responses and the damage morphology were analyzed, and the impact failure mechanism was also revealed. Results show that all sandwich panels were failed, the fiber breakage occurred at the impact region in the traditional panels, while part plies of the rear face-sheets split-off in the SMA hybrid panels. The impact performance of the SMA hybrid panels is improved when compared with the traditional panel, the reduction of the delamination area by 48.15% and the increase of the load-bearing threshold by 32.75% are acquired for the hybrid sandwich panel with two layers of SMA fibers in the rear face-sheet.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


Author(s):  
Shah Alam ◽  
Damodar Khanal

Abstract The goal of this paper is to analyze the impact behavior among geometrically different sandwich panels shown upon impact velocities. Initially, composite model with aluminum honeycomb core and Kevlar (K29) face sheets is developed in ABAQUS/Explicit and different impact velocities are applied. Keeping other parameters constant, model is simulated with T800S/epoxy face sheets. Residual velocities, energy absorption (%), and maximum deformation depth is calculated for sandwich panel for both models at five different velocities by executing finite element analysis. Once the better material is found for face sheets, process is extended by varying the ratio of front face sheet thickness to back face sheet thickness keeping other geometrical parameters constant to find the better geometry. Also, comparison of impact responses of sandwich composite panel on different ratio of front face sheet thickness to back face sheet thickness is done and validated with other results available in literature.


2018 ◽  
Vol 52 (25) ◽  
pp. 3429-3444 ◽  
Author(s):  
Ezequiel Buenrostro ◽  
Daniel Whisler

Three-dimensional fiber-reinforced foam cores may have improved mechanical properties under specific strain rates and fiber volumes. But its performance as a core in a composite sandwich structure has not been fully investigated. This study explored different manufacturing techniques for the three-dimensional fiber-reinforced foam core using existing literature as a guideline to provide a proof of concept for a low-cost and easily repeatable method comprised of readily available materials. The mechanical properties of the fiber-reinforced foam were determined using a three-point bend test and compared to unreinforced polyurethane foam. The foam was then used in a sandwich panel and subjected to dynamic loading by means of a gas gun (103 s−1). High-strain impact tests validated previously published studies by showing, qualitatively and quantitatively, an 18–20% reduction in the maximum force experienced by the fiber-reinforced core and its ability to dissipate the impact force in the foam core sandwich panel. The results show potential for this cost-effective manufacturing method to produce an improved composite foam core sandwich panel for applications where high-velocity impacts are probable. This has the potential to reduce manufacturing and operating costs while improving performance.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


2019 ◽  
Vol 11 (1) ◽  
pp. 109-130 ◽  
Author(s):  
Hosein Andami ◽  
Hamid Toopchi-Nezhad

The performance of rigid polyurethane foams, as an energy absorbent core of sandwich panels covered with two exterior steel sheets, was investigated numerically through finite element methods. After verifying the finite element model, numerical studies were conducted to investigate the role of thickness and density of the foam layer in the response behavior of sandwich panels under blast loads. A set of cylindrical polyurethane foam specimens were manufactured at five different nominal densities, 90, 140, 175, 220, and 250 kg/m3, and their stress–strain curves were evaluated using uniaxial compression tests. The test data were then employed to define characteristics of the polyurethane foams in the finite element model. Based on the results of finite element analysis runs, the optimum density of the foam layer was determined by assessing two response parameters including the peak pressure transmitted to the back face of the foam layer and the maximum deflection of sandwich panel. These response parameters were found to be affected differently by variations in the density of the foam layer within the panel. An increase in the thickness of the foam layer, to a certain extent, was found to be beneficial to the mitigation capability of sandwich panel.


2014 ◽  
Vol 69 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.


2014 ◽  
Vol 980 ◽  
pp. 81-85 ◽  
Author(s):  
Kaoua Sid-Ali ◽  
Mesbah Amar ◽  
Salah Boutaleb ◽  
Krimo Azouaoui

This paper outlines a finite element procedure for predicting the mechanical behaviour under bending of sandwich panels consisting of aluminium skins and aluminium honeycomb core. To achieve a rapid and accurate stress analysis, the sandwich panels have been modelled using shell elements for the skins and the core. Sandwich panels were modelled by a three-dimensional finite element model implemented in Abaqus/Standard. By this model the influence of the components on the behaviour of the sandwich panel under bending load was evaluated. Numerical characterization of the sandwich structure, is confronted to both experimental and homogenization technique results.


Sign in / Sign up

Export Citation Format

Share Document