scholarly journals Preparation and Characterisation of Sustainable Wood Plastic Composites Extracted from Municipal Solid Waste

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3670
Author(s):  
Shahnaz Shahani ◽  
Zhongquan Gao ◽  
Mumtaz A. Qaisrani ◽  
Naveed Ahmed ◽  
Haseeb Yaqoob ◽  
...  

Municipal solid waste (MSW) contains plastic waste that can be used as a sustainable green substitute to reduce oil footprints, CO2 emissions, and environmental pollution. This study aims to recycle plastic waste by manufacturing wood-plastic composites and to improve its mechanical properties by using additives, coupling agents, and lubricants. These composites are prepared by mixing 40–70% of wood flour with 20–25% of a polymer matrix. Wood was degraded at 220 °C, and then the composites were processed at 50 °C. The manufacturing process carried out in the study involved wood waste meshing, drying, shredding, drying, trimming, filling, blending, compounding, and extrusion moulding. The compounding of composites was accomplished in twin-screw extruders. Once the mixture was uniformly mixed, its final shape was given by a two-step extrusion moulding. Previously, researchers aimed at enhancing the mechanical properties of the composites, but our research focus was to improve their durability for different industrial applications. The results suggest that the impact strength is 17 MPa with 50% of wood powder ratio while the maximum value for the tensile strength is 32.5 MPa. About 50% of an increase in wood powder resulted in 8.1% bending strength increase from 26.1 to 32.8 MPa. Reducing the plastic matrix and the wood-particles water swelling ratio resulted in better mechanical properties. The wood species also affected the mechanical properties with their excellent dimensional stability and less variability. A high proportion of wood fibre tends to increase its steady-state torque and viscosity. The mechanical properties against different wood-flour proportions indicate that composite materials exhibit superior water swelling behaviour and extrusion quality.

2007 ◽  
Vol 15 (5) ◽  
pp. 365-370 ◽  
Author(s):  
L.M. Matuana ◽  
S. Cam ◽  
K.B. Yuhasz ◽  
Q.J. Armstrong

This study examined both the use of acrylonitrile-butadiene-styrene (ABS) as a plastic matrix for wood-plastic composites (WPCs) and the effect of impact modification on the mechanical properties of ABS/wood-flour composites. Blends of ABS filled with wood flour (both pine and maple) were processed into profile shape using a conical twin-screw extruder and the mechanical properties of the resulting composites were characterised and compared to WPCs made with polyolefins (HDPE and PP) and rigid PVC matrices. Generally, WPCs made with ABS matrix outperformed their polyolefin counterparts in both flexural strength and modulus, whereas ABS-based composites had inferior strength but greater modulus than those made with rigid PVC. The impact strength of ABS/wood-flour composites was below that of wood plastic composites made with polyolefins. However, impact modification with acrylonitrile-butadiene-styrene terpolymers had some effect in toughening of the ABS/wood-flour composites.


2010 ◽  
Vol 150-151 ◽  
pp. 379-385
Author(s):  
Qun Lü ◽  
Qing Feng Zhang ◽  
Hai Ke Feng ◽  
Guo Qiao Lai

The wood-plastic composites (WPC) were prepared via compress molding by using the blends of high density polyethylene (HDPE) and modified polyethylene (MAPE) as the matrix and wood flour (WF) as filler. The effect of MAPE content in the matrix on the mechanical properties of the matrix and WPC was investigated. It was shown that the change of MAPE content in the matrix had no influence on the tensile strength of the matrix, but markedly reduced the impact strength of the matrix. Additionally, it had significant influence on the strength of WPC. When the content of wood flour and the content of the matrix remained fixed, with increasing the content of MAPE in the matrix, the tensile strength and the flexural strength of WPC tended to increase rapidly initially and then become steady. Moreover, with the increasing of MAPE concentration, the impact strength of WPC decreased when the low content of wood flour (30%) was filled, but increased at high wood flour loading (70%).


Holzforschung ◽  
2014 ◽  
Vol 68 (8) ◽  
pp. 933-940 ◽  
Author(s):  
Yao Chen ◽  
Nicole M. Stark ◽  
Mandla A. Tshabalala ◽  
Jianmin Gao ◽  
Yongming Fan

Abstract The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 24 full-factorial experimental design was employed to determine the effects of treatments and treatment combinations. WPCs were prepared with high-density polyethylene (HDPE) and treated WF was prepared by means of extrusion followed by injection molding, and the water absorption characteristics and mechanical properties of the products were evaluated. WPCs produced with extracted WF had lower water absorption rates and better mechanical properties than those made of untreated WF. WPCs containing delignified WF had higher water absorption rates and improved mechanical performance compared with those made of untreated WF.


2011 ◽  
Vol 393-395 ◽  
pp. 76-79 ◽  
Author(s):  
Hai Bing Huang ◽  
Hu Hu Du ◽  
Wei Hong Wang ◽  
Hai Gang Wang

In this article, wood-plastic composites(WPCs) were manufactured with wood flour(80~120mesh、40~80mesh、20~40mesh、10~20mesh) combing with high density polyethylene(HDPE). Effects of the size of wood flour on mechanical properies and density of composites were investigated. Results showed that particle size of wood flour had an important effect on properitiesof WPCs. Change of mesh number had a outstanding effect on flexural modulus, tensile modulus and impact strength, howere, little effect on flexural strength and tensile strength. When mesh number of wood flour changed from 80~120mesh to 10~20mesh,flexural modulus and tensile modulus were respectively enhanced by 42.4% and 28.4%, respectively, and impact strength was decreased by 35.5%.Size of wood flour basically had no effect on density of composite within 10~120mesh. The use of wood flour or fiber as fillers and reinforcements in thermoplastics has been gaining acceptance in commodity plastics applications in the past few years. WPCs are currently experiencing a dramatic increase in use. Most of them are used to produce window/door profiles,decking,railing,ang siding. Wood thermoplastic composites are manufactured by dispering wood fiber or wood flour(WF) into molten plastics to form composite materials by processing techniques such as extrusion,themoforming, and compression or injection molding[1]. WPCs have such advantages[2]:(1)With wood as filler can improve heat resistance and strength of plastic, and wood has a low cost, comparing with inorganic filler, wood has a low density. Wood as strengthen material has a great potential in improving tensile strength and flexural modulus[3];(2) For composite of same volume, composites with wood as filler have a little abrasion for equipment and can be regenerated;(3)They have a low water absorption and low hygroscopic property, They are not in need of protective waterproof paint, at the same time, composite can be dyed and painted for them own needs;(4)They are superior to wood in resistantnce to crack、leaf mold and termite aspects, composites are the same biodegradation as wood;(5)They can be processed or connected like wood;(6)They can be processed into a lots of complicated shape product by means of extrusion or molding and so on, meanwhile, they have high-efficiency raw material conversion and itself recycle utilization[4]. While there are many sucesses to report in WPCs, there are still some issues that need to be addressed before this technology will reach its full potential. This technology involves two different types of materials: one hygroscopic(biomass) and one hydrophobic(plastic), so there are issues of phase separation and compatibilization[5]. In this paper, Effects of the size of wood powder on mechanical properties of WPCs were studied.


2016 ◽  
Vol 715 ◽  
pp. 23-26
Author(s):  
Masahiro Nishida ◽  
Shun Furuya ◽  
Hirokazu Ito ◽  
Rie Makise ◽  
Masaki Okamoto

Wood-plastic composites (WPCs) which consist of wood flour and plastics have been widely used as architectural materials for a long time. However, the impact resistance is not always high and basic mechanical properties at high strain rate are not fully understood. In order to clarify the tensile behavior at high strain rates, split Hokinson pressure bar method was used for WPCs consisting of polypropylene. The effects of mixing ratio on the maximum stress and elongation at break were examined at high strain rates.


2019 ◽  
Vol 26 (1) ◽  
pp. 114-121
Author(s):  
Sumit Manohar Yadav ◽  
Kamal Bin Yusoh

AbstractWood-plastic composites (WPC) were manufactured from polypropylene, wood flour, maleic anhydride grafted polypropylene and organoclay. The sub-surface mechanical properties and the sub-surface creep behavior of the organoclay-based WPC were examined by the nanoindentation technique. The results showed that the hardness, elastic modulus and creep resistance of the WPC enhanced with the loading of C20 organoclay. This enhancement was subject to the organoclay content and the dispersion of organoclay in the polymer matrix. The hardness, elastic modulus and creep resistance of WPC with 1 wt% organoclay content enhanced by approximately 36%, 41% and 17%, respectively, in contrast with WPC without organoclay. To study the impact of organoclay content on the creep performance of WPC, a viscoelastic model was actualized. The results demonstrated that the model was in good agreement with the experimental information. Reinforcement of organoclay prompts expansion in elastic deformation and instigates a higher initial displacement at the early stage of creep.


2019 ◽  
Vol 36 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Haoqun Hong ◽  
Quannan Guo ◽  
Haiyan Zhang ◽  
Hui He

The article presents the preparation of a high-performance wood–plastic composites with improved interfacial interactions by adding ternary-monomer graft copolymers as the interfacial modifiers and by braising wood flour (WF) and investigates their effects on the rheological properties of recycled polyethylene (rPE)/WF composites. The processing properties, capillary rheological properties, dynamical rheological properties, and mechanical properties were investigated. Results show that graft copolymer of polyethylene is effective in improving the interfacial interactions of rPE/WF composites, dramatically changing the rheological and mechanical properties. The braising of WF enlarges the gaps of cells and promotes the infiltration of rPE into the gaps, as promoting the increasing in mechanical properties of rPE/WF composites and significantly changing the rheological properties of the composites.


2010 ◽  
Vol 150-151 ◽  
pp. 358-361
Author(s):  
Wen Lei ◽  
Hong Ming Ma ◽  
Yi Xu

In order to improve the flame retardancy of wood-plastic composites,a new sandwiched composite is introduced in this paper with basic magnesium sulfated whisker(MOS) filled high density polyethylene(HDPE) as skin and wood flour filled HDPE as core.The oxygen index of the skin and the mechanical properties of the whole sandwiched composite are investigated. The results show that, the flame retardancy of the skin will be improved siginicantly when much MOS is used,and the skin containing 40wt% MOS has an oxygen index of 25.6%,in addition,the sandwiched composite in which both the mass contents of MOS in the skin and wood flour in the core are 40% has better mechanical properties than the traditional wood plastic composite(WPC) without any skin,and the sandwiched WPC is more fatigue-resistant.


Sign in / Sign up

Export Citation Format

Share Document