scholarly journals Numerical Modelling and Analytical Comparison of Delamination during Cryogenic Drilling of CFRP

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3995
Author(s):  
Arunachalam S. S. Balan ◽  
Chidambaram Kannan ◽  
Kunj Jain ◽  
Sohini Chakraborty ◽  
Siddharth Joshi ◽  
...  

Carbon-Fibre-Reinforced Polymers (CFRPs) have seen a steady rise in modern industrial applications due to their high strength-to-weight ratio and corrosion resistance. However, their potential is being hindered by delamination which is induced on them during machining operations. This has led to the adoption of new and innovative techniques like cryogenic-assisted machining which could potentially help reduce delamination. This study is aimed at investigating the effect of cryogenic conditions on achieving better hole quality with reduced delamination. In this paper, the numerical analysis of the drilling of CFRP composites is presented. Drilling tests were performed experimentally for validation purposes. The effects of cooling conditions and their subsequent effect on the thrust force and delamination were evaluated using ABAQUS/CAE. The numerical models and experimental results both demonstrated a significant reduction in the delamination factor in CFRP under cryogenic drilling conditions.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2136
Author(s):  
Sharizal Ahmad Sobri ◽  
Robert Heinemann ◽  
David Whitehead

Carbon fibre reinforced polymer composites (CFRPs) can be costly to manufacture, but they are typically used anywhere a high strength-to-weight ratio and a high steadiness (rigidity) are needed in many industrial applications, particularly in aerospace. Drilling composites with a laser tends to be a feasible method since one of the composite phases is often in the form of a polymer, and polymers in general have a very high absorption coefficient for infrared radiation. The feasibility of sequential laser–mechanical drilling for a thick CFRP is discussed in this article. A 1 kW fibre laser was chosen as a pre-drilling instrument (or initial stage), and mechanical drilling was the final step. The sequential drilling method dropped the overall thrust and torque by an average of 61%, which greatly increased the productivity and reduced the mechanical stress on the cutting tool while also increasing the lifespan of the bit. The sequential drilling (i.e., laser 8 mm and mechanical 8 mm) for both drill bits (i.e., 2- and 3-flute uncoated tungsten carbide) and the laser pre-drilling techniques has demonstrated the highest delamination factor (SFDSR) ratios. A new laser–mechanical sequence drilling technique is thus established, assessed, and tested when thick CFRP composites are drilled.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


Author(s):  
Amir Hussain Idrisi ◽  
Abdel-Hamid Ismail Mourad ◽  
Beckry Abdel-Magid ◽  
Mohammad Mozumder ◽  
Yaser Afifi

Abstract Composite materials are being used in many industrial applications such as automobile, aerospace, marine, oil and gas industries due to their high strength to weight ratio. The long-term effect of sustained loads and environmental factors that include exposure to UV light, temperature, and moisture have been under investigation by many researchers. The major objective of this study is to evaluate the effects of harsh environment (e.g. seawater and high temperature) on the structural properties of E-glass epoxy composite materials. These effects were studied in terms of seawater absorption, permeation of salt and contaminants, chemical and physical bonds at the interface and degradation in mechanical properties. Samples were immersed in seawater at room temperature (23°C), 65°C and 90°C for the duration of 6 months. Results show that seawater absorption increased with immersion time at 23°C and 65°C, whereas the weight of the specimens decreased at 90°C. The moisture causes swelling at 23°C and 65°C and breakdown of chemical bonds between fiber and matrix at 90°C. It is observed that high temperature accelerates the degradation of the E-glass epoxy composite. At 90°C, the tensile strength of E-glass epoxy sharply decreased by 72.92% but no significant change was observed in modulus of elasticity of the composite.


2020 ◽  
Vol 28 (04) ◽  
pp. 2050032
Author(s):  
Hoang Minh Khoa Nguyen ◽  
Dong-Wook Oh

Short-fiber reinforced polymer composites have been widely used in industrial applications due to high strength-to-weight ratio, versatile manufacturing process, and etc. The alignment of fiber type additives plays an important role in the mechanical properties of a composite material. In this paper, an injection molding process was imitated with a liquid polymer composite flow inside a [Formula: see text] elbow channel. We performed a flow visualization experiment and analyzed the additive alignment of carbon fiber flowing in the polydimethylsiloxane (PDMS) medium. By analyzing the flow visualization images, the angle changes at the corner region of the elbow channel were calculated. At the corner region, the change of passage direction leads to the change of fiber orientation. It was observed that near to the convex region, fibers have angle change values larger than the fibers traveling near to the concave region.


2019 ◽  
Vol 304 ◽  
pp. 01025
Author(s):  
Farid Abed ◽  
Wael Abuzaid ◽  
Yomna Morad

Magnesium alloys’ mechanical behavior has received increasing attention because of its high strength to weight ratio making them ideal for various industrial applications, such as vehicle components, transportation and aerospace. The objective of this work is to closely investigate the thermo-mechanical properties of magnesium alloy AZ31 at different strain rates and temperatures. Tensile tests are conducted on a 30 mm gauge length MgAZ31 specimens at two quasi-static strain rates (1.11x10−3 s−1 and 0.28 s−1) at a range of temperatures between 25 ºC and 250 ºC. Digital Image Correlation (DIC) system was used to calculate the true strain and provide quantitative assessment of the localized deformation response at high levels of deformation. The stress-strain responses of MgAZ31 show that the yield stress as well as the ultimate stress decreases as temperature increases and strain rate decreases. Moreover, the difference between the yield and ultimate stresses at both strain rates increases rapidly as temperature increases. The material shows a significant increase in ductility as temperature increases while the modulus of elasticity remains independent of change in strain rates.


Author(s):  
Tizian Bucher ◽  
Min Zhang ◽  
Chang Jun Chen ◽  
Ravi Verma ◽  
Wayne Li ◽  
...  

Sandwich panels with metal foam cores have a tremendous potential in various industrial applications due to their outstanding strength-to-weight ratio, stiffness, and shock absorption capacity. A recent study paved the road toward a more economical implementation of sandwich panels, by showing that the material can be successfully bent up to large angles using laser forming. The study also developed a fundamental understanding of the underlying bending mechanisms and established accurate numerical models. In this study, these efforts were carried further, and the impact of the foam core structure, the facesheet and foam core compositions, and the adhesion method on the bending efficiency and the bending limit was investigated. These factors were studied individually and collectively by comparing two fundamentally different sandwich panel types. Thermally induced stresses at the facesheet/core interface were thoroughly considered. Numerical modeling was carried out under different levels of geometric accuracy to complement bending experiments under a wide range of process conditions. Interactions between panel properties and process conditions were demonstrated and discussed.


2018 ◽  
Vol 1148 ◽  
pp. 136-141
Author(s):  
K.H. Preethi ◽  
B.S. Ajay Kumar ◽  
N.J. Krishna Prasad ◽  
K. Barat

An extensively studied Al-Mg-Si (AA6061) alloy has been considered for this investigation. This alloy is used for large number of industrial applications since it possesses medium to high strength to weight ratio, excellent weldability and corrosion resistance. It has been observed that these alloys are usually used in sheet form and were welded for large application. Even though a number of welding procedures are available, the most convenient and economical procedure of tungsten inert gas (TIG) welding was used to weld Al-Mg-Si sheets. All the sheets were having a thickness of 3.0 mm. In the case of single pass TIG welded samples, the pulsed current has been found beneficial as it is most advantageous over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy. This is possibly due to the grain refinement occurring in the fusion zone. These results clearly demonstrated that current parameters and its optimization is most important aspect for obtaining a good weldment. An Influence of process parameters and their influence on mechanical properties are explained in detail in light of microstructural details.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Vaithiyanathan V ◽  
Balasubramanian V ◽  
Malarvizhi S ◽  
Vijay Petley ◽  
Shweta Verma

Titanium and its alloys have been considered as one of the best engineering materials for industrial applications. Excellent combination of properties such as high strength to weight ratio, excellent resistance to corrosion makes them attractive materials for many industrial applications. Recently, considerable research has been performed on Gas Tungsten Constricted Arc welding (GTCAW) process and reported advantages include, lower heat input, reduced residual stresses and distortion. In this investigation, tensile properties of GTCA welded Ti-6Al-4V alloy joints were evaluated. Single pass, autogeneous welds free from volumetric defects were fabricated using optimized GTCAW parameters. The joints were characterized using optical microscopy, scanning electron microscopy and microhardness, survey. Tensile properties of the joints were overmatching with the base metal. The alpha and granular beta grains in the base metal were changed into short acicular alpha martensitic structure in the fusion zone as a result of GTCAW


Author(s):  
Tizian Bucher ◽  
Min Zhang ◽  
Chang Jun Chen ◽  
Ravi Verma ◽  
Wayne Li ◽  
...  

Abstract Sandwich panels with metal foam cores have a tremendous potential in various industrial applications due to their outstanding strength-to-weight ratio, stiffness, and shock absorption capacity. A recent study paved the road towards a more economical implementation of sandwich panels, by showing that the material can be successfully bent up to large angles using laser forming. The study also developed a fundamental understanding of the underlying bending mechanisms and established accurate numerical models. In this study, these efforts were carried further, and the impact of the foam core structure, the facesheet and foam core compositions, as well as the adhesion method on the bending efficiency and bending limit was investigated. These factors were studied individually and collectively by comparing two fundamentally different sandwich panel types. Thermally-induced stresses at the facesheet/core interface were thoroughly considered. Numerical modeling was carried out under different levels of geometric accuracy, to complement bending experiments under a wide range of process conditions. Interactions between panel properties and process conditions were demonstrated and discussed.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2674
Author(s):  
Sharizal Ahmad Sobri ◽  
Robert Heinemann ◽  
David Whitehead

Composites from carbon fibre reinforced polymers (CFRPs) play a significant role in modern manufacturing. They are typically used in aerospace and other industries that require high strength-to-weight ratios. Composite machining, however, remains a challenging job and sometimes is hampered by poor efficiency. Despite considerable research being conducted over the past few years on the machining of composite materials, the material nevertheless suffers from delamination, fibre loss, and imperfect finishing of the fuselage. Laser technology is becoming increasingly popular as an alternative approach to cutting and drilling composites. Experiments have been conducted with a CFRP thickness of 25.4 mm using fibre laser to test the effect of the machining parameters on the primary performance measurements. In this study, different machining criteria are used to assess the fibre laser ability of thick CFRP composites for drilling operation. The experimental findings revealed that a fibre laser is capable of penetrating a thick CFRP to a depth of 22 mm by using a novel drilling procedure.


Sign in / Sign up

Export Citation Format

Share Document