scholarly journals Design of Hybrid Polymeric-Lipid Nanoparticles Using Curcumin as a Model: Preparation, Characterization, and In Vitro Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin-Loaded Nanoparticles

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4207
Author(s):  
Krissia Wilhelm Romero ◽  
María Isabel Quirós ◽  
Felipe Vargas Huertas ◽  
José Roberto Vega-Baudrit ◽  
Mirtha Navarro-Hoyos ◽  
...  

Polymeric lipid hybrid nanoparticles (PLHNs) are the new generation of drug delivery systems that has emerged as a combination of a polymeric core and lipid shell. We designed and optimized a simple method for the preparation of Pluronic F-127-based PLHNs able to load separately demethoxycurcumin (DMC) and bisdemethoycurcumin (BDM). CUR was used as a model compound due to its greater availability from turmeric and its structure similarity with DMC and BDM. The developed method produced DMC and BDM-loaded PLHNs with a size average of 75.55 ± 0.51 and 15.13 ± 0.014 nm for DMC and BDM, respectively. An FT-IR analysis confirmed the encapsulation and TEM images showed their spherical shape. Both formulations achieved an encapsulation efficiency ≥ 92% and an exhibited significantly increased release from the PLHN compared with free compounds in water. The antioxidant activity was enhanced as well, in agreement with the improvement in water dissolution; obtaining IC50 values of 12.74 ± 0.09 and 16.03 ± 0.55 for DMC and BDM-loaded PLHNs, respectively, while free curcuminoids exhibited considerably lower antioxidant values in an aqueous solution. Hence, the optimized PHLN synthesis method using CUR as a model and then successfully applied to obtain DMC and BDM-loaded PLHNs can be extended to curcuminoids and molecules with a similar backbone structure to improve their bioactivities.

NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 439 ◽  
Author(s):  
Li ◽  
Peifer ◽  
Janussen ◽  
Tasdemir

The sponge genus Latrunculia is a prolific source of discorhabdin type pyrroloiminoquinone alkaloids. In the continuation of our research interest into this genus, we studied the Antarctic deep-sea sponge Latrunculia biformis that showed potent in vitro anticancer activity. A targeted isolation process guided by bioactivity and molecular networking-based metabolomics yielded three known discorhabdins, (−)-discorhabdin L (1), (+)-discorhabdin A (2), (+)-discorhabdin Q (3), and three new discorhabdin analogs (−)-2-bromo-discorhabdin D (4), (−)-1-acetyl-discorhabdin L (5), and (+)-1-octacosatrienoyl-discorhabdin L (6) from the MeOH-soluble portion of the organic extract. The chemical structures of 1–6 were elucidated by extensive NMR, HR-ESIMS, FT-IR, [α]D, and ECD (Electronic Circular Dichroism) spectroscopy analyses. Compounds 1, 5, and 6 showed promising anticancer activity with IC50 values of 0.94, 2.71, and 34.0 µM, respectively. Compounds 1–6 and the enantiomer of 1 ((+)-discorhabdin L, 1e) were docked to the active sites of two anticancer targets, topoisomerase I-II and indoleamine 2,3-dioxygenase (IDO1), to reveal, for the first time, the binding potential of discorhabdins to these proteins. Compounds 5 and 6 are the first discorhabdin analogs with an ester function at C-1 and 6 is the first discorhabdin bearing a long-chain fatty acid at this position. This study confirms Latrunculia sponges to be excellent sources of chemically diverse discorhabdin alkaloids.


2019 ◽  
Vol 42 (1) ◽  
pp. 94-101
Author(s):  
Nur Adibah Mohd Amin ◽  
Rusnah Syahila Duali Hussen ◽  
See Mun Lee ◽  
Kae Shin Sim ◽  
Suerialoasan Navanesan

Abstract Two new diorganotin(IV) complexes with the general formula (RC7H6)2Sn(L) (where RC7H6 = p-ClBn, C1; and p-FBn, C2) were prepared based on the reaction of 2,3-bis(4-hydroxysalicylidene-amino)-maleic nitrile (L) with substituted dibenzyltin(IV) dichloride. The structures were confirmed by elemental analysis, Fourier transform infrared (FT-IR), proton and carbon nuclear magnetic resonance (1H and 13C NMR). They were tested against several cancer cell lines by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. C1, which was most effective against MCF-7 breast cancer cell line, was further investigated in formulation and encapsulation studies, including drug encapsulation efficiency, particle size, morphology and in vitro drug release. An encapsulation of about 90% was achieved with particles of 128 nm average diameter. Field emission scanning electron microscopy (FESEM) confirmed a spherical shape for the encapsulated C1. The cumulative drug release over a period of 60 days in phosphate buffered saline (PBS) at pH 7.4 was 75%. Based on these results, the formulated drug has the potential of a slow release drug for cancer chemotherapy.


Author(s):  
Amany A. Mostafa ◽  
Khaled R. Mohamed ◽  
Tarek M. Dahy ◽  
Gehan T. El-Bassyouni

Hydroxyapatite is the most used calcium phosphate in implant production. In this study a novel method for the preparation of nano-hydroxyapatite is described. A mixture of calcium chloride and potassium hydrogen phosphate were introduced to the urea-formaldehyde resin during formation. The obtained resin was precalcined at 450°C to get rid of the organic materials. The prepared powder was characterized using XRD, thermal analysis (DTA, TG), FT-IR, TEM and SEM supplemented with EDAX. In particular, the results of XRD show that the powder produced at 900°C was wholly formed of nano-hydroxyapatite. TEM reveals that nano-hydroxyapatite particles have spherical shape and their size was less than 50 nm in width. SEM confirms the fine nature of the produced powder. The dielectric constant increases with increasing temperature and decreases with increasing frequencies. The dielectric loss shows a relaxation peak, which shifts to the higher frequency region with increasing temperature, conforming to a Debye-type relaxation process. In-vitro results show that fine grains of acicular hydroxyapatite were formed by immersing disc in simulated body fluid solution (SBF) proving the apatite formation onto the surface. Future work recommends incorporation of the prepared nano-sized hydroxyapatite into biocompatible polymer for tissue engineering applications.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1244
Author(s):  
Galo Cárdenas-Triviño ◽  
Sebastián Monsalve-Rozas ◽  
Luis Vergara-González

Microcapsules (MC) based on chitosan (CH) and including nano-magnetite and erlotinib were synthesized. The microparticles were characterized by SEM, FT-IR and TGA. The percentage of encapsulation was determined, as well as its microbiological activity. Finally, the effectiveness of the formulation was evaluated in terms of cell viability and/or toxicity when compared with the reference drug. The formulation used to prepare the microcapsules showed some bacteriostatic properties. The characterization of microcapsules exhibited amorphous spherical shape and average size of 1.29, 1.58 and 1.62 mm for chitosan, chitosan + nanomagnetite and chitosan + nanomagnetite + erlotinib, respectively. The infrared spectra showed characteristic bands of the erlotinib and magnetite, confirming its internalization. The thermogravimetric analyzes indicated that the materials do not undergo changes at optimum working temperatures. The HPLC analysis showed a 52% of encapsulation. Finally, the formulation probed had lower effectiveness and less cytotoxicity, than the drug without encapsulating “in vitro” studies. For that reason several assays are in progress.


2019 ◽  
Vol 31 (6) ◽  
pp. 1398-1404
Author(s):  
NEDRA TOUJ ◽  
ABDULLAH SULAIMAN AL-AYED ◽  
NACEUR HAMDI

The synthesis of metallo-phthalocyanines complexes (M = Co, Ni, Cu, Zn) containing azo dye were described in this study. The metallophthalocyanines have been supported by elemental analysis, UV-visible, FT-IR and NMR. The aggregation of phthalocyanine compounds was investigated in different solvents and concentrations. The newly synthesized metallophthalocyanines possess modest antibacterial activity against various Gram-positive and Gram-negative bacteria. Moreover, these complexes have been tested as antioxidant and presented remarkable activities by two different in vitro chemical assays. They were able to reduce DPPH % radical with IC50 values ranging from 3.8 to 7.5 μmol L-1 and some of them also reduced ABTS % radical cation.


Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 47 ◽  
Author(s):  
Bicheng Fan ◽  
Pradeep Dewapriya ◽  
Fengjie Li ◽  
Martina Blümel ◽  
Deniz Tasdemir

Marine algae represent a prolific source of filamentous fungi for bioprospecting. In continuation of our search for new anticancer leads from fungi derived from the brown alga Fucus vesiculosus, an endophytic Pyrenochaetopsis sp. FVE-001 was selected for an in-depth chemical analysis. The crude fungal extract inhibited several cancer cell lines in vitro, and the highest anticancer activity was tracked to its CHCl3–soluble portion. A bioactivity-based molecular networking approach was applied to C18-SPE fractions of the CHCl3 subextract to predict the bioactivity scores of metabolites in the fractions and to aid targeted purification of anticancer metabolites. This approach led to a rapid isolation of three new decalinoylspirotetramic acid derivatives, pyrenosetins A–C (1–3) and the known decalin tetramic acid phomasetin (4). The structures of the compounds were elucidated by extensive NMR, HR-ESIMS, FT-IR spectroscopy, [α]D and Mosher’s ester method. Compounds 1 and 2 showed high anticancer activity against malignant melanoma cell line A-375 (IC50 values 2.8 and 6.3 μM, respectively), in line with the bioactivity predictions. This is the first study focusing on secondary metabolites of a marine-derived Pyrenochaetopsis sp. and the second investigation performed on the member of the genus Pyrenochaetopsis.


Author(s):  
Hiren Dayani ◽  
Abhishek Jha ◽  
Manjunath Ghate ◽  
Vivek K. Vyas

Background: Cancer is a global health burden and the leading cause of death across the world after cardiovascular disease. Objective: The objective of this work was the design, synthesis, and pharmacological evaluation of 2-phenylquinolin-4-amine derivatives as apoptosis inducers and anticancer agents. Method: In this study, we performed ligand-based pharmacophore modeling as a promising design strategy for the design of substituted quinoline derivatives as apoptosis inducers and anticancer agents. The designed compounds were synthesized as 2-phenylquinolin-4-amine derivatives and characterized by FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy. Synthesized compounds were screened for apoptosis-inducing activity using caspase-3 activation and annexine-FITC assays and also screened against cancer cell line (HT-29) in an antiproliferative assay. Results: Synthesized compounds 7a and 7d demonstrated EC50 values of 6.06 and 6.69 µM in caspase-3 activation assay, respectively, and also showed late stage induction of apoptosis in annexine assay. Synthesized compounds 7a, 7d and 7i, also exhibited good antiproliferative activity with IC50 values of 8.12, 9.19, and 11.34 µM, respectively, which revealed that these are promising apoptosis inducers for the further development of new anticancer agents.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3890 ◽  
Author(s):  
Manal A. Awad ◽  
Manal M. Alkhulaifi ◽  
Noura S. Aldosari ◽  
Shaykha Alzahly ◽  
Ali Aldalbahi

Nanomedicine is growing due to the development of new medical diagnostic tools and new nanostructure-based therapies that exert direct biological action or function as pharmacological carriers. Nanoparticles (NPs) synthesis provides an eco-friendly approach for different applications. Among NPs, silver NPs (AgNPs) are gaining considerable research interest due to their broad range of activity and their usability in the medical and biotechnology fields. In this study, a new AgNP synthesis method was developed using an aqueous pigeon dropping (PD) extract in silver nitrate (AgNO3). The rapid of AgNPs yield was detected visually. Analysis of UV-vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and electron microscopy (TEM) transmission showed a spherical or near spherical shape of AgNPs with mean size of 135 nm. AgNPs antimicrobial activities (anti-bacterial and anti-fungal) were determined using agar well diffusion method. These NPs further screened for anticancer activity in vitro using A-549 and MCF-7 cell lines. The results showed that the inhibition zone for the obtained PD AgNPs versus Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus were 26, 18, 17 and 15 mm, respectively. PD AgNPs showed the highest antifungal effect against Aspergillus flavus and the lowest effect against Penicillium griseofulvum. In vitro anti-cancer activities showed that the inhibitory concentration of 50% (IC50) of AgNPs was 10.3 ± 1.15 and 12.19 ± 0.75 µg mL−1 against A-549 and MCF-7 cancer cell lines, respectively.


2021 ◽  
Vol 8 (1) ◽  
pp. 5-10
Author(s):  
Maryam Alizadeh ◽  
Ashraf Kariminik ◽  
Ali Akbari

Background: The antimicrobial resistance of pathogenic bacteria has emerged as a major health problem in recent years. Extensive research has been conducted to find new antimicrobial agents. Objectives: The aim of this study was to examine the antibacterial activities of benzohydrazide derivatives. Methods: Manganese hydrogen sulfate choline chloride was applied in a simple method for synthesizing benzohydrazide derivatives. Antibacterial activities of the derivatives were assessed against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Bacillus subtilis, diphtheroids, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The structure of the synthesized compounds was determined employing 1 H/13C NMR and Fourier-transform infrared (FT-IR) spectroscopy. The reactions were carried out in choline chloride dissolved in water at room temperature. Results: The results of this study showed that benzohydrazide derivatives had very desired antibacterial activities against the assessed bacteria. Conclusions: Further investigations are required to assess the safety and efficacy of benzohydrazide derivatives as antibacterial agents in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document