scholarly journals Treatment of Winery Wastewater with a Combination of Adsorption and Thermocatalytic Processes

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Nuno Jorge ◽  
Ana R. Teixeira ◽  
Vanessa Guimarães ◽  
Marco S. Lucas ◽  
José A. Peres

The release of winery wastewater (WW) into the environment, without proper treatment, can cause severe problems to freshwater quality and natural fauna and flora. Therefore, in this work a treatment process was studied, combining adsorption and thermocatalytic oxidation processes. In a more specific way, it optimized the combination of activated sodium bentonite (Na-Mt) and potassium persulfate (KPS)/sodium percarbonate (SPC) as oxidant agents. With the combination of best operational conditions of adsorption ([Na-Mt] = 5.0 g/L, pH = 3.0, V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h) and thermocatalytic oxidation processes (/H2O2 ratio = 1:0.25, /H2O2 dosage = 0.1:0.025 (g/g), pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h), a total organic carbon, chemical oxygen demand and total polyphenols removal of 76.7, 81.4 and >99% was achieved, respectively. Finally, it was evaluated the effect of the treatment processes in the germination index (GI) of different plant seeds. A GI > 80% was achieved, showing a low phytotoxicity effect of the processes applied in the winery wastewater treatment.

2016 ◽  
Vol 7 (4) ◽  
pp. 520-528 ◽  
Author(s):  
B. F. Bakare ◽  
S. Mtsweni ◽  
S. Rathilal

The reuse of greywater is steadily gaining importance in South Africa. Greywater contains pollutants that could have adverse effects on the environment and public health if the water is not treated before reuse. Successful implementation of any greywater treatment process depends largely on its characteristics in terms of the pollutant strength. This study investigated the physico-chemical characteristics of greywater from different sources within 75 households in a community in Durban, South Africa. The study was undertaken to create an understanding of greywater quality from different sources within and between households. Greywater samples were collected from the kitchen, laundry and bathing facilities within each of the households. The samples were analysed for: pH, conductivity, turbidity, total solids, chemical oxygen demand (COD) and biological oxygen demand (BOD). There was a significant difference in the parameters analysed between the greywater from the kitchen compared with the greywater from the bathtub/shower and laundry. It was also observed that the characteristics of greywater from the different households varied considerably. The characteristics of the greywater obtained in this study suggest that the greywater generated cannot be easily treatable using biological treatment processes and/or technologies due to the very low mean BOD : COD ratio (<0.5).


2019 ◽  
Vol 16 (1) ◽  
pp. 41 ◽  
Author(s):  
Misha T. Elias ◽  
Jisha Chandran ◽  
Usha K. Aravind ◽  
Charuvila T. Aravindakumar

Environmental contextRanitidine, a widely prescribed antiulcer drug commonly found in surface waters, has been identified as an emerging contaminant due to its toxicity and the enhanced toxicity displayed by its transformation products. Mechanisms for the formation of ranitidine transformation products and their degradation pathways induced by UV oxidation processes are presented. This work provides insight into treatment processes to remove these toxic chemicals from environmental water bodies. AbstractThe transformation products (TPs) of pharmaceuticals formed during advanced oxidation processes (AOPs) are of great significance, but there are still gaps in our knowledge regarding the persistence of such compounds in the water matrices, their impact on human health and the applicability of such techniques during water treatment processes. Ranitidine (RAN), a highly prescribed gastrointestinal drug, has been widely detected in various surface waters and experiments, along with its TPs, which show enhanced toxicity. The present study analyses the TPs formed from the degradation of RAN in aqueous solution induced by three AOPs; namely UV-photolysis, UV/peroxodisulfate (PDS) and sonolysis. The degradations followed pseudo first-order kinetics, with removal efficiencies of 99.8, 100 and 98.8% after 60min under UV photolysis, UV/PDS, and sonolysis, respectively, with a corresponding decrease in chemical oxygen demand (COD) of 25, 100 and 75%. Structures of the main TPs were elucidated by using LC-Q-ToF-MS in positive mode, and possible degradation pathways are proposed which mainly involved C-N and C-H bond cleavage, hydroxylation and reduction of nitro groups. Possible mechanisms for the formation of the identified TPs (elucidated by using electrospray ionisation–collisionally induced dissociation) support their structural assignments. Seven out of the 11 TPs presented here (namely TP-1, TP-4, TP-5, TP-6, TP-7, TP-9 and TP-10) were not reported in previous studies of RAN using any other AOPs, while four (m/z 331, 270, 288 and 286) were found to retain the NO2 group, which might contribute to the formation of halonitromethanes (HNMs) during chlorination of drinking water. Interestingly, we identified an additional sonolysis product, TP-3, whose formation can only be rationalised by invoking ozone.


2020 ◽  
Vol 12 (23) ◽  
pp. 10196
Author(s):  
Piotr Bugajski ◽  
Agnieszka Operacz ◽  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Karolina Kurek

The purpose of this work was to determine the optimal percentage of wastewater from cesspool in the mixture of wastes subjected to treatment processes, which will not have a negative impact on the functioning of the collective treatment plant. The study was carried out over a period of two years, with 48 samples of wastewater flowing in from the sewage network and delivered with the slurry tanker collected and subjected to physical and chemical analysis. The analysis included: Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Nitrogen (TN). In addition, the study defined the daily balance of the amount of inflowing and transported wastewater. Based on the analysis carried out, it was found that the unit loads of BOD5, COD and TN in the mixture of wastewater subjected to the treatment process will be at the level of loads assumed in the project, when the share of supplied wastewater, i.e., from cesspool, will be at the level of 5% of the total amount of wastewater. Considering that in the analysed period the total average daily amount of wastewater subjected to the treatment process was 253.5 m3·d−1, the optimal amount of wastewater delivered should be 12.7 m3 in each day of the week.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 289-296
Author(s):  
C. F. Ouyang ◽  
T. J. Wan

This study investigated and compared the treatment characteristics of three different kinds of biological wastewater treatment plants (including rotating biological contactor, trickling filter and oxidation ditch) which are currently operated in Taiwan. The field investigation of this study concentrated on the following items: the performance of biological oxygen demand (BOD) and suspended solids (SS) removal; the sludge yield rate of BOD removal; the settleability of sludge solids; the properties of sludge thickening; the power consumption and land area requirement per unit volume of wastewater. Finally, based on the results of the field investigation, a comparison of the treatment characteristics of the three different biological treatment processes was evaluated.


1995 ◽  
Vol 32 (12) ◽  
pp. 91-97 ◽  
Author(s):  
P. Y. Yang ◽  
M. Kuroshima

In order to develop a simple operation for an anaerobic treatment process for highly concentrated pig wastewater for small producers, a three-stage anaerobic treatment process was investigated. The system provided a series of mixing, homogenization, biological reaction and final stabilization of concentrated pig waste (total solid content of 8–10%). The process provided a stable operational performance, simple operational procedure and well stabilized sludge effluent. It was also found that the system is economically feasible in Hawaii. Compared to the other treatment processes for highly concentrated pig waste, this process is considered as an appropriate alternative for the application of the small producers in land limited and tropical conditions. Also, the present treatment system can be easily developed into a prefabricated package plant which can minimize the on-site labor and building costs.


Author(s):  
Karanbir Singh ◽  
Aditya Chhabra ◽  
Vaibhav Kapoor ◽  
Vaibhav Kapoor

This study is conducted to analyze the effect on the Hardness and Micro Structural Behaviour of three Sample Grades of Tool Steel i.e. EN-31, EN-8, and D3 after Heat Treatment Processes Such As Annealing, Normalizing, and Hardening and Tempering. The purpose of Selecting Tool Steel is Because Tool Steel is Mostly Used in the Manufacturing Industry.This study is based upon the empirical study which means it is derived from experiment and observation rather than theory.


2015 ◽  
Vol 71 (7) ◽  
pp. 1088-1096 ◽  
Author(s):  
B. Kim ◽  
M. Gautier ◽  
G. Olvera Palma ◽  
P. Molle ◽  
P. Michel ◽  
...  

The aim of this study was to characterize the efficiency of an intensified process of vertical flow constructed wetland having the following particularities: (i) biological pretreatment by trickling filter, (ii) FeCl3 injection for dissolved phosphorus removal and (iii) succession of different levels of redox conditions along the process line. A pilot-scale set-up designed to simulate a real-scale plant was constructed and operated using real wastewater. The influences of FeCl3 injection and water saturation level within the vertical flow constructed wetland stage on treatment performances were studied. Three different water saturation levels were compared by monitoring: suspended solids (SS), total phosphorus (TP), dissolved chemical oxygen demand (COD), ammonium, nitrate, phosphate, iron, and manganese. The results confirmed the good overall efficiency of the process and the contribution of the trickling filter pretreatment to COD removal and nitrification. The effects of water saturation level and FeCl3 injection on phosphorus removal were evaluated by analysis of the correlations between the variables. Under unsaturated conditions, good nitrification and no denitrification were observed. Under partly saturated conditions, both nitrification and denitrification were obtained, along with a good retention of SSs. Finally, under saturated conditions, the performance was decreased for almost all parameters.


2019 ◽  
Vol 17 (1) ◽  
pp. 1288-1300
Author(s):  
Anna Kwiecińska-Mydlak ◽  
Marcin Sajdak ◽  
Katarzyna Rychlewska ◽  
Jan Figa

AbstractCoke oven liquor is one of the most contaminated liquid streams generated by the coal processing industry, thus its proper treatment and utilization is crucial for sustainable and environmentally neutral plant operation. The conventional wastewater treatment process comprises of chemical and biological processes. Within the current research the detailed role of chemical treatment is described. Commercially available iron-based coagulants (PIX100, PIX100COP, PIX113, PIX116) were tested to understand their removal efficiency and impact on the stream parameters. The influence of iron dose in the range of 300-500 mgFe/L on the process performance was also examined.It was found that the main role of chemical treatment was to bind toxicants harmful to activated sludge microorganisms, i.e. free and complex cyanides and sulphides. Among the tested iron-based conventional coagulants ferrous salts were more efficient than ferric salts. It was also observed that efficiency of the process strongly depended on wastewater properties (especially in regard to pH, which should be in the range of 9-10) and the coagulant selection needed to be done individually for a given wastewater type. The removal rates of particular contaminants were diversified and for free cyanides, complex cyanides and sulphides they were in the range of 23-91%, -156-77% and -357-98%, respectively. The expected, simultaneous removal of chemical oxygen demand (COD) during the treatment was not observed and even the parameter value increased after the process due to probable formation of compounds less vulnerable to oxidation.


2018 ◽  
Vol 78 (8) ◽  
pp. 1704-1714 ◽  
Author(s):  
François-René Bourgeois ◽  
Frédéric Monette ◽  
Daniel G. Cyr

Abstract To develop a better understanding for fixed biomass processes, the development of a nitrifying bacterial biofilm, as well as the performance of treatment during modifications to operational conditions of a full-scale submerged biological filter were examined. The development of the nitrifying biofilm was investigated at four depth levels (1, 2, 4 and 5 feet). The result of bacterial subpopulations analyzed by qPCR relative to the physico-chemical parameters of the wastewater during the various tests (sustained aeration, modified backwash parameters and inflow restriction) revealed an increase of the relative presence of nitrifying microorganisms throughout the biofilm (especially for nitrite oxidizing bacteria (NOB)), but this was not necessarily accompanied by a better nitrification rate. The highest observed nitrification rate was 49% of removal in the test cell during backwashing conditions, whereas the relative ammonia oxidizing bacteria (AOB) population was 0.032% and NOB was 0.008% of the total biomass collected. The highest percentage of nitrifying bacteria observed (0.034% AOB and 0.18% NOB) resulted in a nitrification rate of 21%. The treatment of organic matter determined by measuring the chemical and biochemical oxygen demand (COD, CBOD5) was improved.


Sign in / Sign up

Export Citation Format

Share Document