scholarly journals A Closed-Loop Optimized System with CFD Data for Liquid Maldistribution Model

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1332
Author(s):  
Wei Zhang ◽  
Liyi Li ◽  
Baoping Zhang ◽  
Xin Xu ◽  
Jian Zhai ◽  
...  

For the simulation of a trickle-bed reactor (TBR) in coal and oil refining, modeling the liquid maldistribution of the gas-liquid distributor incurs enormous pre-processing work and bears a huge computational cost. A closed-loop optimized system with computational fluid dynamic (CFD) data is therefore proposed for the first time in this paper. A fast prediction model based on support vector regression (SVR) is developed to simplify the modeling of the liquid flow rate in TBRs. The model uses CFD simulation results to determine an optimized set of structural parameters for the gas-liquid distributor in TBRs. In order to obtain an accurate SVR model quickly, the particle swarm optimization (PSO) algorithm is employed to optimize the SVR parameters. Then, the structural parameters corresponding to the minimum liquid maldistribution factor are calculated using the response surface methodology (RSM) based on the hybrid PSO-SVR model. The CFD validation results show a good agreement with the values predicted by RSM, with liquid maldistribution factors of 0.159 and 0.162, respectively.

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Nikhil Paliwal ◽  
Robert J. Damiano ◽  
Nicole A. Varble ◽  
Vincent M. Tutino ◽  
Zhongwang Dou ◽  
...  

Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver’s modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the “true” accuracy of a CFD solver.


2021 ◽  
Author(s):  
Majid Bayatian ◽  
Khosro Ashrafi ◽  
Zahra Amiri ◽  
Elahe Jafari

Abstract Viruses can be transmitted in indoor environments. Important factors in Indoor Air Quality (IAQ) are air velocity, relative humidity, temperature, and airflow pattern and Computational fluid dynamics (CFD) can use for IAQ assessment. The objective of this study is to CFD simulation in the living room to the prediction of the air pattern and air velocity. A computational fluid dynamic model was applied for airflow pattern and air velocity simulation. For simulation, GAMBIT, FLUENT, and CFD post software were used as preprocessing, processing, and post-processing, respectively. CFD validation was carried out by comparing the computed data with the experimental measurements. The final mesh number was set to 1,416,884 elementary cells and SIMPLEC algorithm was used for pressure-velocity coupling. PERSTO, and QUIK schemes have been used for the pressure terms, and the other variables, respectively. Simulations were carried out in ACH equals 3, 6 and 8 in four lateral walls. The maximum error and root mean square error from the air velocity were 14% and 0.10, respectively. Terminal settling velocity and relaxation time were equal to 0.302 ×10− 2 m/s and 0.0308 ×10− 2 s for 10 µm diameter particles, respectively. The stopping distance was 0.0089m and 0.011m for breathing and talking, respectively. The maximum of mean air velocity is in scenario 4 with ACH = 8 that mean air velocity is equal to 0.31 in 1.1m height, respectively. The results of this study showed that avoiding family gatherings is necessary for exposure control and suitable airflow and pattern can be improving indoor air conditions.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Thomas Höhne

Plant measured data from VVER-1000 coolant mixing experiments were used within the OECD/NEA and AER coupled code benchmarks for light water reactors to test and validate computational fluid dynamic (CFD) codes. The task is to compare the various calculations with measured data, using specified boundary conditions and core power distributions. The experiments, which are provided for CFD validation, include single loop cooling down or heating-up by disturbing the heat transfer in the steam generator through the steam valves at low reactor power and with all main coolant pumps in operation. CFD calculations have been performed using a numerical grid model of 4.7 million tetrahedral elements. The Best Practice Guidelines in using CFD in nuclear reactor safety applications has been used. Different advanced turbulence models were utilized in the numerical simulation. The results show a clear sector formation of the affected loop at the downcomer, lower plenum and core inlet, which corresponds to the measured values. The maximum local values of the relative temperature rise in the calculation are in the same range of the experiment. Due to this result, it is now possible to improve the mixing models which are usually used in system codes.


2000 ◽  
Author(s):  
S. A. A. Abdul Ghani ◽  
A. Aroussi ◽  
E. Rice

Abstract This paper describes the simulation of vehicle natural climatic environment in a closed loop full-scale automotive climatic wind tunnel. The tunnel simulates wind, rain, and temperature for several road conditions. It generates under controlled heat loading, wind speeds of up to 50kph with different approach boundary conditions, rainfalls from drizzle to cloudburst and road inclines up to 15° in any direction. The design and optimization process of the tunnel functions is outlined and examples of its use in vehicle development are given. The size constraint and the need for a compact design are important features of the tunnel. The tunnel provides an important test bed for close scrutiny of the relationship between rain ingress, vehicle speed, road condition, heat loading and vehicle geometry. The tunnel can also be used to study vehicle thermal management, vehicle thermal comfort, engine cold starting, and wipers efficiency in severe cold weather. Computational Fluid Dynamic (CFD) simulation is used to optimize and asses the performance of a number of key tunnel components. The resulting tunnel is approximately 9.5m in length, 9.5 m in height and 3 m in width.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Bingxiao Jiang ◽  
Junhu Yang ◽  
Xiaohui Wang ◽  
Senchun Miao ◽  
Xiaobang Bai

In view of the poor performance of pumps as turbines (PAT) operation, and the problem that the structural parameters cannot be optimized in the whole domain, the hybrid model of support vector machine (SVM) model and high-dimensional model representation (HDMR) method is applied to the optimization of PAT blade. Specifically, a PAT was selected, and the surrogate model for PAT blade optimization was constructed with MATLAB, Creo, and ANSYS software. The particle swarm optimization (PSO) algorithm was used to predict the performance data by global optimization. Finally, numerical prediction and experimental methods were used to verify the predicted data. These proved the applicability of the hybrid model in the optimization of fluid machinery. The numerical simulation results show that at the optimal operating point, the numerical simulation efficiency of the optimized PAT is 5.49% higher than that of the prototype PAT, and the output power is 7.2% higher. The test results show that the external characteristic curve of the numerical simulation PAT is basically consistent with the test results. At the optimal operating point, the test efficiency of the optimized PAT is 5.1% higher than that of the prototype PAT, and the output power is 6.9% higher.


Author(s):  
Pingxin Wang ◽  
Xiaoting Rui ◽  
Jianshu Zhang ◽  
Hailong Yu ◽  
Hongtao Zhu

Aiming at the problems of complex modeling and low calculation efficiency during dynamical optimization of tracked vehicles, a method for the closed-loop system called Riccati transfer matrix method for multibody system is proposed. In order to reduce the vibration acceleration of track shoes in the driving process, this paper uses the PSO algorithm and utilizes a strategy of decreasing the inertia weight to optimize the structural parameters of tracked vehicles. The research shows that the root mean square of vibration acceleration of track shoes above the support rollers is obviously reduced. This method provides a theoretical reference for the design of tracked vehicles and is beneficial to the dynamic design of complex systems.


Author(s):  
Liam McManus ◽  
Justin Hodges ◽  
Ilyas Beary

Abstract Numerical investigations of the NASA stage 37 compressor case are presented. Simcenter STAR-CCM+ is used for RANS based aerodynamic quantifications of the transonic compressor, with specific attention to the near stall and the peak efficiency operating points. In these axial turbomachines, the unsteady effects are non-trivial, and need to be accounted for in the design methods. Typically, transient simulation of fully realistic engine hardware is unrealistic in terms of the computational expense. However, using a harmonic balance approach in computational fluid dynamic (CFD) simulation has been shown to have a proficiency in capturing the dominant unsteady behaviors at a relatively lower computational cost. As such, the performance of the NASA stage 37 compressor is characterized with both steady and harmonic balance approaches. Furthermore, a thorough exploration and sensitivity study on the turbulence modeling is conducted. The lag elliptic blending k-ε turbulence model is considered, due to its capability for improved predictions in highly separated turbomachinery flows, as compared to the k-O SST and k-O BSL model results.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 313
Author(s):  
Marco Sinagra ◽  
Calogero Picone ◽  
Costanza Aricò ◽  
Antonio Pantano ◽  
Tullio Tucciarelli ◽  
...  

Crossflow turbines represent a valuable choice for energy recovery in aqueducts, due to their constructive simplicity and good efficiency under variable head jump conditions. Several experimental and numerical studies concerning the optimal design of crossflow hydraulic turbines have already been proposed, but all of them assume that structural safety is fully compatible with the sought after geometry. We show first, with reference to a specific study case, that the geometry of the most efficient impeller would lead shortly, using blades with a traditional circular profile made with standard material, to their mechanical failure. A methodology for fully coupled fluid dynamic and mechanical optimization of the blade cross-section is then proposed. The methodology assumes a linear variation of the curvature of the blade external surface, along with an iterative use of two-dimensional (2D) computational fluid dynamic (CFD) and 3D structural finite element method (FEM) simulations. The proposed methodology was applied to the design of a power recovery system (PRS) turbine already installed in an operating water transport network and was finally validated with a fully 3D CFD simulation coupled with a 3D FEM structural analysis of the entire impeller.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Gozawa ◽  
Yoshihiro Takamura ◽  
Tomoe Aoki ◽  
Kentaro Iwasaki ◽  
Masaru Inatani

AbstractWe investigated the change in the retinal gas cover rates due to intraocular gas volume and positions using computational eye models and demonstrated the appropriate position after pars plana vitrectomy (PPV) with gas tamponade for rhegmatogenous retinal detachments (RRDs). Computational fluid dynamic (CFD) software was used to calculate the retinal wall wettability of a computational pseudophakic eye models using fluid analysis. The model utilized different gas volumes from 10 to 90%, in increments of 10% to the vitreous cavity in the supine, sitting, lateral, prone with closed eyes, and prone positions. Then, the gas cover rates of the retina were measured in each quadrant. When breaks are limited to the inferior retina anterior to the equator or multiple breaks are observed in two or more quadrants anterior to the equator, supine position maintained 100% gas cover rates in all breaks for the longest duration compared with other positions. When breaks are limited to either superior, nasal, or temporal retina, sitting, lower temporal, and lower nasal position were maintained at 100% gas cover rates for the longest duration, respectively. Our results may contribute to better surgical outcomes of RRDs and a reduction in the duration of the postoperative prone position.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


Sign in / Sign up

Export Citation Format

Share Document