scholarly journals Potential Antioxidant and Anticancer Activities of Secondary Metabolites of Nostoc linckia Cultivated under Zn and Cu Stress Conditions

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1972
Author(s):  
Khaled M. A. Ramadan ◽  
Hossam S. El-Beltagi ◽  
Sanaa M. M. Shanab ◽  
Eman A. El-fayoumy ◽  
Emad A. Shalaby ◽  
...  

The objective of the present study is to determine the antioxidant and anticancer activities of Nostoc linckia extracts cultivated under heavy metal stress conditions (0.44, 0.88, and 1.76 mg/L for zinc and 0.158, 0.316, 0.632 mg/L for copper). Phycobiliprotein, phenolic compounds, flavonoids, and tannins were measured. Active ingredients of extracts were evaluated by GC-mass spectroscopy. The obtained results revealed that higher zinc and copper concentrations showed growth inhibition while 0.22 mg/L (Zn) and 0.079 mg/L (Cu) enhanced growth, reaching its maximum on the 25th day. Increases in catalase, lipids peroxidation, and antioxidants, as well as tannins and flavonoids, have been induced by integration of 0.88 mg/L (Zn) and 0.316 mg/L (Cu). Elevation of Zn concentration induced augmentation of antioxidant activity of crude extract (DPPH or ABTS), with superior activity at 0.44 mg/L zinc concentration (81.22%). The anticancer activity of Nostoc linckia extract (0.44 mg/L Zn) tested against four cancer cell lines: A549, Hela, HCT 116, and MCF-7. The extract at 500 µg/mL appeared the lowest cell viability of tested cell lines. The promising extract (0.44 mg/L Zn) recorded the lowest cell viability of 25.57% in cervical cell line, 29.74% in breast cell line, 33.10% in lung cell line and 34.53% in the colon cell line. The antioxidant active extract showed significant stability against pH with attributed increase in antioxidant activity in the range between 8–12. The extract can be used effectively as a natural antioxidant and anticancer after progressive testing.

Medicina ◽  
2019 ◽  
Vol 55 (7) ◽  
pp. 349 ◽  
Author(s):  
Mayra A. Mendez-Encinas ◽  
Elizabeth Carvajal-Millan ◽  
Agustín Rascón-Chu ◽  
Humberto Astiazarán-García ◽  
Dora E. Valencia-Rivera ◽  
...  

Background and objectives: Arabinoxylans (AX) can gel and exhibit antioxidant capacity. Previous studies have demonstrated the potential application of AX microspheres as colon-targeted drug carriers. However, the cytotoxicity of AX gels has not been investigated so far. Therefore, the aim of the present study was to prepare AX-based particles (AXM) by coaxial electrospraying method and to investigate their antioxidant potential and cytotoxicity on human colon cells. Materials and Methods: The gelation of AX was studied by monitoring the storage (G′) and loss (G′′) moduli. The morphology of AXM was evaluated using optical and scanning electron microscopy (SEM). The in vitro antioxidant activity of AX before and after gelation was measured using the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. In addition, the effect of AX and AXM on the proliferation of human colon cells (CCD 841 CoN) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: The final G′ and G′′ values for AX gels were 293 and 0.31 Pa, respectively. AXM presented spherical shape and rough surface with a three-dimensional and porous network. The swelling ratio and mesh size of AXM were 35 g water/g AX and 27 nm, respectively. Gelation decreased the antioxidant activity of AX by 61–64 %. AX and AXM did not affect proliferation or show any toxic effect on the normal human colon cell line CCD 841 CoN. Conclusion: The results indicate that AXM could be promising biocompatible materials with antioxidant activity.


Author(s):  
Burli Sanganna ◽  
Havagiray R. Chitme ◽  
Khanvilkar Vrunda ◽  
Mohsin J. Jamadar

Objective: The aim of the study was to investigate the ethanolic and aqueous extract of leaves of Moringa oleifera for phytochemical constituents, antiproliferative and antioxidant activity.Methods: The ethanolic extract of leaves of Moringa oleifera, belonging to the family Moringaceae was prepared by using soxhlet apparatus and aqueous extract was prepared by using maceration process. The extract was evaluated for its phytochemical constituents. The antiproliferative effects of both extracts were checked by using MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) assay on HT-29 colon cell line and the antioxidant activity were checked by using DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. In antiproliferative and antioxidant activity the 5-FU (5-fluro uracil) and Ascorbic acid used as a standard drug for present results conclusion respectively.Results: The results obtained in MTT assay shown that ethanolic extract of Moringa oleifera had a more potent antiproliferative effect (growth inhibition of 62.25% at 100 μg/ml) on HT-29 colon cell line as compared to aqueous extract (% growth inhibition of 27.86 at 100 μg/ml) of Moringa oleifera. The ethanolic extract of Moringa oleifera shown more potent antioxidant activity (% inhibition of ethanolic 75.57 at 100 μg/ml) than aqueous extract (38.16 at 100 μg/ml) of Moringa oleifera. The activity shown by the extract is concentration dependent.Conclusion: In the present study we have investigated that the effect of ethanolic and aqueous leaves extracts of Moringa oleifera possess antiproliferative and antioxidant properties.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saba Sameri ◽  
Chiman Mohammadi ◽  
Mehrnaz Mehrabani ◽  
Rezvan Najafi

Abstract Background Silibinin, as a chemopreventive agent, has shown anti-cancer efficacy against different types of cancers. In the present study, we investigated the anti-cancer activities of silibinin on CT26 mouse colon cell line. Methods CT26 cells were treated with different concentrations of silibinin. To examine the cytotoxic effect of silibinin on proliferation, apoptosis, autophagy, angiogenesis, and migration, MTT, colony-forming assay, Annexin V/PI flow cytometry, RT-qPCR, and Scratch assay were used. Results Silibinin was found to significantly reduce CT26 cells survival. Furthermore, silibinin strongly induced apoptosis and autophagy by up-regulating the expression of Bax, Caspase-3, Atg5, Atg7 and BECN1 and down-regulating Bcl-2. Silibinin considerably down-regulated the expression of COX-2, HIF-1α, VEGF, Ang-2, and Ang-4 as well as the expression of MMP-2, MMP-9, CCR-2 and CXCR-4. Conclusions The present study revealed that silibinin shows anticancer activities by targeting proliferation, cell survival, angiogenesis, and migration of CT26 cells.


2009 ◽  
Vol 53 (10) ◽  
pp. 1226-1236 ◽  
Author(s):  
Phillip Bellion ◽  
Melanie Olk ◽  
Frank Will ◽  
Helmut Dietrich ◽  
Matthias Baum ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael T. C. Poon ◽  
Morgan Bruce ◽  
Joanne E. Simpson ◽  
Cathal J. Hannan ◽  
Paul M. Brennan

Abstract Background Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. Methods We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). Results We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0–27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3–277.7 μM), 223.1 μM (IQR 92.0–590.1 μM) and 230.0 μM (IQR 34.1–650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1–800.0 μM). Conclusion Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.


2011 ◽  
Vol 205 ◽  
pp. S116-S117
Author(s):  
M. Rezaei ◽  
H. Kalantari ◽  
M. HashemiTabar ◽  
M. Jafari ◽  
Z. Bahadori

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
H. F. Youssef ◽  
W. H. Hegazy ◽  
H. H. Abo-almaged ◽  
G. T. El-Bassyouni

The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. Thein vitrocytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 362 ◽  
Author(s):  
Amélia M. Silva ◽  
Helen L. Alvarado ◽  
Guadalupe Abrego ◽  
Carlos Martins-Gomes ◽  
Maria L. Garduño-Ramirez ◽  
...  

Oleanolic (OA) and ursolic (UA) acids are recognized triterpenoids with anti-cancer properties, showing cell-specific activity that can be enhanced when loaded into polymeric nanoparticles. The cytotoxic activity of OA and UA was assessed by Alamar Blue assay in three different cell lines, i.e., HepG2 (Human hepatoma cell line), Caco-2 (Human epithelial colorectal adenocarcinoma cell line) and Y-79 (Human retinoblastoma cell line). The natural and synthetic mixtures of these compounds were tested as free and loaded in polymeric nanoparticles in a concentration range from 2 to 32 µmol/L. The highest tested concentrations of the free triterpene mixtures produced statistically significant cell viability reduction in HepG2 and Caco-2 cells, compared to the control (untreated cells). When loaded in the developed PLGA nanoparticles, no differences were recorded for the tested concentrations in the same cell lines. However, in the Y-79 cell line, a decrease on cell viability was observed when testing the lowest concentration of both free triterpene mixtures, and after their loading into PLGA nanoparticles.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1261
Author(s):  
Gabriele Vilkickyte ◽  
Lina Raudone ◽  
Vilma Petrikaite

Lingonberry leaves and fruits are associated with a range of potential bioactivities related to their phenolic content and composition, but the identification of major biological activity markers remains limited. The present study aimed at the isolation of lingonberry phenolic fractions and biological activity evaluation of them. Crude dry extracts of lingonberry leaves and fruits were fractionated by chromatography using Sephadex LH-20 and analyzed by validated HPLC-PDA method. For each fraction, the anticancer activity against human clear cell renal cell carcinoma (CaKi-1), human colon adenocarcinoma (HT-29), and human malignant melanoma (IGR39) cell lines was determined using MTT assay, and the radical scavenging, reducing, and chelating activities were investigated using ABTS, FRAP, and FIC assays, respectively. Further, 28 phenolics were identified and quantified in the crude extract of lingonberry leaves and 37 in the extract of fruits. These compounds, during fractionation steps, were selectively eluted into active fractions, enriched with different groups of phenolics—monophenols, anthocyanins, phenolic acids, catechins, flavonols, or proanthocyanidins. Fractions of lingonberry leaves and fruits, obtained by the last fractionation step, proved to be the most active against tested cancer cell lines and possessed the greatest antioxidant activity. In this perspective, the predominant compounds of these fractions—polymeric and mainly A-type dimeric proanthocyanidins—also quercetin can be considered to be anticancer and antioxidant activity markers of lingonberries.


Sign in / Sign up

Export Citation Format

Share Document