scholarly journals Parametric Shape and Manufacturing Optimization of Customized Kitesurf Hydrofoils

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 126
Author(s):  
Jakob Schmidt ◽  
Marc Fleischmann ◽  
Conrad Ehemann ◽  
Jörg Kaufmann ◽  
Holger Cebulla

To minimize the costs of the current manufacturing of kitesurf hydrofoil wings, a workflow using a finite elements model was developed. By coupling a computational fluid dynamic (CFD) analysis with a structural finite element analysis (FEA), an optimization based on a genetic algorithm is implemented. The design space of the optimization is defined by the manufacturing processes. This enables the algorithm to find wing shapes which are not only suitable for the rider’s weight and preferred take-off speed but can also be produced directly on a universal mold surface. To reduce the amount of cut-off material and sustain the mechanical stresses, the output of the optimization contains the required number and orientation of all fiber layers within the reinforcement structure. This research shows that a single mold can produce different wing shapes to satisfy the needs of a wide range of customers.

2021 ◽  
Vol 13 (3) ◽  
pp. 107-111
Author(s):  
Manova MOSES ◽  
Guruprasaath SURESH

The purpose of this article is to reduce the structural weight and drag of an unmanned aerial vehicle (UAV) or drone while increasing its endurance. To achieve a high strength to weight ratio, Finite Element Analysis is used to study the structural strength characteristics of UAV frames. A computational fluid dynamic analysis (CFD) is performed for different angles of attack and vehicle speeds to estimate the drag coefficient using the k-e turbulence model. The analysis results show that the designed UAV vehicle has excellent performance characteristics and stability at 5° AoA and 3 m/sec. This article outlines the overall design of the unmanned aerial vehicle, which was created using the CATIA V6 platform. COMSOL 5.6 software is used for structural and CFD analysis.


2018 ◽  
Vol 35 (4) ◽  
pp. 62-64
Author(s):  
Nazar Ul Islam Wani

Pilgrimage in Islam is a religious act wherein Muslims leave their homes and spaces and travel to another place, the nature, geography, and dispositions of which they are unfamiliar. They carry their luggage and belongings and leave their own spaces to receive the blessings of the dead, commemorate past events and places, and venerate the elect. In Pilgrimage in Islam, Sophia Rose Arjana writes that “intimacy with Allah is achievable in certain spaces, which is an important story of Islamic pilgrimage”. The devotional life unfolds in a spatial idiom. The introductory part of the book reflects on how pilgrimage in Islam is far more complex than the annual pilgrimage (ḥajj), which is one of the basic rites and obligations of Islam beside the formal profession of faith (kalima); prayers (ṣalāt); fasting (ṣawm); and almsgiving (zakāt). More pilgrims throng to Karbala, Iraq, on the Arbaeen pilgrimage than to Mecca on the Hajj, for example, but the former has received far less academic attention. The author expands her analytic scope to consider sites like Konya, Samarkand, Fez, and Bosnia, where Muslims travel to visit countless holy sites (mazarāt), graves, tombs, complexes, mosques, shrines, mountaintops, springs, and gardens to receive the blessings (baraka) of saints buried there. She reflects on broader methodological and theoretical questions—how do we define religion?—through the diversity of Islamic traditions about pilgrimage. Arjana writes that in pilgrimage—something which creates spaces and dispositions—Muslim journeys cross sectarian boundaries, incorporate non-Muslim rituals, and involve numerous communities, languages, and traditions (the merging of Shia, Sunni, and Sufi categories) even to “engende[r] a syncretic tradition”. This approach stands against the simplistic scholarship on “pilgrimage in Islam”, which recourses back to the story of the Hajj. Instead, Arjana borrows a notion of ‘replacement hajjs’ from the German orientalist Annemarie Schimmel, to argue that ziyārat is neither a sectarian practice nor antithetical to Hajj. In the first chapter, Arjana presents “pilgrimage in Islam” as an open, demonstrative and communicative category. The extensive nature of the ‘pilgrimage’ genre is presented through documenting spaces and sites, geographies, and imaginations, and is visualized through architectural designs and structures related to ziyārat, like those named qubba, mazār (shrine), qabr (tomb), darih (cenotaph), mashhad (site of martyrdom), and maqām (place of a holy person). In the second chapter, the author continues the theme of visiting sacred pilgrimage sites like “nascent Jerusalem”, Mecca, and Medina. Jerusalem offers dozens of cases of the ‘veneration of the dead’ (historically and archaeologically) which, according to Arjana, characterizes much of Islamic pilgrimage. The third chapter explains rituals, beliefs, and miracles associated with the venerated bodies of the dead, including Karbala (commemorating the death of Hussein in 680 CE), ‘Alawi pilgrimage, and pilgrimage to Hadrat Khidr, which blur sectarian lines of affiliation. Such Islamic pilgrimage is marked by inclusiveness and cohabitation. The fourth chapter engages dreams, miracles, magical occurrences, folk stories, and experiences of clairvoyance (firāsat) and the blessings attached to a particular saint or walī (“friend of God”). This makes the theme of pilgrimage “fluid, dynamic and multi-dimensional,” as shown in Javanese (Indonesian) pilgrimage where tradition is associated with Islam but involves Hindu, Buddhist and animistic elements. This chapter cites numerous sites that offer fluid spaces for the expression of different identities, the practice of distinct rituals, and cohabitation of different religious communities through the idea of “shared pilgrimage”. The fifth and final chapter shows how technologies and economies inflect pilgrimage. Arjana discusses the commodification of “religious personalities, traditions and places” and the mass production of transnational pilgrimage souvenirs, in order to focus on the changing nature of Islamic pilgrimage in the modern world through “capitalism, mobility and tech nology”. The massive changes wrought by technological developments are evident even from the profusion of representations of Hajj, as through pilgrims’ photos, blogs, and other efforts at self documentation. The symbolic representation of the dead through souvenirs makes the theme of pilgrimage more complex. Interestingly, she then notes how “virtual pilgrimage” or “cyber-pilgrimage” forms a part of Islamic pilgrimage in our times, amplifying how pilgrimage itself is a wide range of “active, ongoing, dynamic rituals, traditions and performances that involve material religions and imaginative formations and spaces.” Analyzing religious texts alone will not yield an adequate picture of pilgrimage in Islam, Arjana concludes. Rather one must consider texts alongside beliefs, rituals, bodies, objects, relationships, maps, personalities, and emotions. The book takes no normative position on whether the ziyāratvisitation is in fact a bid‘ah (heretical innovation), as certain Muslim orthodoxies have argued. The author invokes Shahab Ahmad’s account of how aspects of Muslim culture and history are seen as lying outside Islam, even though “not everything Muslims do is Islam, but every Muslim expression of meaning must be constituting in Islam in some way”. The book is a solid contribution to the field of pilgrimage and Islamic studies, and the author’s own travels and visits to the pilgrimage sites make it a practicalcontribution to religious studies. Nazar Ul Islam Wani, PhDAssistant Professor, Department of Higher EducationJammu and Kashmir, India


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Roberto De Santis ◽  
Teresa Russo ◽  
Julietta V. Rau ◽  
Ida Papallo ◽  
Massimo Martorelli ◽  
...  

A wide range of materials has been considered to repair cranial defects. In the field of cranioplasty, poly(methyl methacrylate) (PMMA)-based bone cements and modifications through the inclusion of copper doped tricalcium phosphate (Cu-TCP) particles have been already investigated. On the other hand, aliphatic polyesters such as poly(ε-caprolactone) (PCL) and polylactic acid (PLA) have been frequently investigated to make scaffolds for cranial bone regeneration. Accordingly, the aim of the current research was to design and fabricate customized hybrid devices for the repair of large cranial defects integrating the reverse engineering approach with additive manufacturing, The hybrid device consisted of a 3D additive manufactured polyester porous structures infiltrated with PMMA/Cu-TCP (97.5/2.5 w/w) bone cement. Temperature profiles were first evaluated for 3D hybrid devices (PCL/PMMA, PLA/PMMA, PCL/PMMA/Cu-TCP and PLA/PMMA/Cu-TCP). Peak temperatures recorded for hybrid PCL/PMMA and PCL/PMMA/Cu-TCP were significantly lower than those found for the PLA-based ones. Virtual and physical models of customized devices for large cranial defect were developed to assess the feasibility of the proposed technical solutions. A theoretical analysis was preliminarily performed on the entire head model trying to simulate severe impact conditions for people with the customized hybrid device (PCL/PMMA/Cu-TCP) (i.e., a rigid sphere impacting the implant region of the head). Results from finite element analysis (FEA) provided information on the different components of the model.


1995 ◽  
Vol 39 ◽  
pp. 109-117
Author(s):  
Burkhard Beckhoff ◽  
Birgit Kanngießer

X-ray focusing based on Bragg reflection at curved crystals allows collection of a large solid angle of incident radiation, monochromatization of this radiation, and condensation of the beam reflected at the crystal into a small spatial cross-section in a pre-selected focal plane. Thus, for the Bragg reflected radiation, one can achieve higher intensities than for the radiation passing directly to the same small area in the focal plane. In that case one can profit considerably from X-ray focusing in an EDXRF arrangement. The 00 2 reflection at Highly Oriented Pyrolytic Graphite (HOPG) crystals offers a very high intensity of the Bragg reflected beam for a wide range of photon energies. Furthermore, curvature radii smaller than 10 mm can be achieved for HOPG crystals ensuring efficient X-ray focusing in EDXRF applications. For the trace analysis of very small amounts of specimen material deposited on small areas of thin-filter backings, HOPG based X-ray focusing may be used to achieve a very high intensity of monochromatic excitation radiation.


Materials ◽  
2003 ◽  
Author(s):  
Sayavur I. Bakhtiyarov ◽  
Ruel A. Overfelt

Numerical simulation of decomposed gases through foam pattern was conducted using finite element analysis. A new kinetic model is proposed for gaseos phase flow between molten metal and foam material. The computations were performed for a wide range of Reynolds numbers. The results of the simulations are compared with the experiemental data obtained in this study.


2004 ◽  
Vol 01 (02) ◽  
pp. 309-328
Author(s):  
R. J. HO ◽  
S. A. MEGUID ◽  
R. G. SAUVÉ

This paper presents a unified novel technique for enforcing nonlinear beam-to-shell, beam-to-solid, and shell-to-solid constraints in explicit finite element formulations. The limitations of classical multi-point constraint approaches are examined at length, particularly in the context of explicit solution schemes. Novel formulation of a generalized constraint method that ensures proper element coupling is then presented, and its computer implementation in explicit integration algorithms is discussed. Crucial in this regard is the accurate and efficient representation of finite rotations, accomplished using an incremental rotation tensor. The results of some illustrative test cases show the accuracy and robustness of the newly developed algorithm for a wide range of deformation, including that in which large rotations are encountered. When compared to existing works, the salient features of the current method are in evidence.


2005 ◽  
Vol 495-497 ◽  
pp. 1591-1596 ◽  
Author(s):  
Vladimir Luzin ◽  
S. Banovic ◽  
Thomas Gnäupel-Herold ◽  
Henry Prask ◽  
R.E. Ricker

Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and “springback” has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.


Author(s):  
Shahrokh Shahpar ◽  
David Giacche ◽  
Leigh Lapworth

This paper describes the development of an automated design optimization system that makes use of a high fidelity Reynolds-Averaged CFD analysis procedure to minimize the fan forcing and fan BOGV (bypass outlet guide vane) losses simultaneously taking into the account the down-stream pylon and RDF (radial drive fairing) distortions. The design space consists of the OGV’s stagger angle, trailing-edge recambering, axial and circumferential positions leading to a variable pitch optimum design. An advanced optimization system called SOFT (Smart Optimisation for Turbomachinery) was used to integrate a number of pre-processor, simulation and in-house grid generation codes and postprocessor programs. A number of multi-objective, multi-point optimiztion were carried out by SOFT on a cluster of workstations and are reported herein.


Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


Sign in / Sign up

Export Citation Format

Share Document