scholarly journals Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass

Proteomes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Zhujia Ye ◽  
Sasikiran Reddy Sangireddy ◽  
Chih-Li Yu ◽  
Dafeng Hui ◽  
Kevin Howe ◽  
...  

Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.

2021 ◽  
Author(s):  
Qiuzhu Wang ◽  
Lin Zhang ◽  
Shushen Yang

Abstract Backgrounds: Wheat (Triticum aestivum L.) is one of the most important food crops in the world. It faces various abiotic stresses during its growth. Drought is one of the main factors limiting the growth and development of wheat. Severe drought stress will Lead to a decline in wheat production. Cytoplasmic glyceraldehyde-3-phosphate dehydrogenase (GAPC) is an important member of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) family, which is widely present in plant cytoplasm. Plants play an important role in the process of primary metabolism and stress resistance.Result: In this study, a comparative transcriptomic analysis of the TaGAPCs-RNAi strain of Changwu 134 and the wild-type wheat seedlings of Changwu 134 under natural drought conditions was carried out. A total of 30067 differentially expressed genes were screened in RNAi strains and wild-type strains, of which 19,959 genes were up-regulated in RNAi strains and 10,108 genes were down-regulated in transcription. GO analysis shows that differential genes are mainly enriched in biological regulation, cellular processes, metabolic processes, and responses to stimuli. KEGG analysis showed that the differential genes were mainly concentrated in the biosynthesis of phenylpropane, plant hormone signal transduction and flavonoid biosynthesis pathways. By analyzing the expression levels of differential transcription factors, the significantly down-regulated transcription factor WRKY family member TaWRKY2 / 22/28/29/33/40/47/52 in wheat was screened out. The TaWRKY28/33/40/47 gene silencing line was successfully obtained using the barley stripe mosaic virus (BSMV-VIGS) technology. The plants with TaWRKY28/33/40/47 gene silenced were subjected to natural drought treatment, and physiological and biochemical index tests were carried out. The results showed that the growth status of gene-silenced plants was worse than that of wild-type plants, and the relative water content and chlorophyll content decreased. The content of MDA, H2O2 and superoxide anion increases, the activity of antioxidant enzymes (SOD, POD, CAT) decreases, and the content of proline decreases. Conclusion: The results showed that TaGAPCs regulates the expression of some TaWRKYs transcription factors, activates antioxidant pathways, enhances tolerance of wheat to drought stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Liang ◽  
Kunhua Wei ◽  
Fan Wei ◽  
Shuangshuang Qin ◽  
Chuanhua Deng ◽  
...  

Abstract Background Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. Results To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. Conclusion This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.


2020 ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (Linum usitatissimum L.) also as known as linseed is one of the most important oil crops in the world. Although linseed was reported to show better tolerance to abiotic stress conditions compared to other oil crops, the molecular mechanisms underlying linseed tolerance to drought stress are largely unknown. Moreover, as a result of climate change, drought dramatically reduces linseed yield and quality, but so far very little is known about how linseed coordinates the drought-resistant genes expression of response to different level of drought stress on the genome-wide level. Results To explore the transcriptional response of linseed to drought stress (DS) and repeated drought stress (RD), we first determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) using single-molecule real-time sequencing and RNA-sequencing under drought stress (DS) and repeated drought stress (RD) at the seedling stage. Gene Ontology (GO) enrichment analysis showed that compared with NY-17, the up-regulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance under drought stress. In addition, the number of up-regulated genes in linseed under RD was more 30% than it under DS. In addition, a total of, 4,436 linseed transcription factors were identified, of these, 1,190 genes were responsive to stress treatments. Finally, the expression patterns of proline biosynthesis and DNA repair structural genes were verified by RT- PCR. Conclusions Drought tolerance of Z141 may be related to its specifically up-regulated drought tolerance genes under drought stress. Several variable physiological responses occurred in repeated than in sustained drought treatment. Sum up, this study provides a new perspective to understand the drought adaptability of linseed.


2010 ◽  
Vol 135 (6) ◽  
pp. 506-510 ◽  
Author(s):  
Jinmin Fu ◽  
Bingru Huang ◽  
Jack Fry

Effects of deficit irrigation applied to home lawns, used as means of water conservation, are an important issue. However, the impact of deficit irrigation on sucrose metabolism in tall fescue (Festuca arundinacea) is unknown and important because sucrose is the dominant form of carbohydrate transported to developing plant organs. The objectives of this study were to investigate the effects of deficit irrigation on leaf water content, osmotic potential (ψS), sucrose level, and the activity of sucrose phosphate synthase (SPS; EC 2.4.1.14), sucrose synthase (SS; EC 2.4.1.13), and acid invertase (AI; EC 3.2.1.26) in tall fescue leaves. Sods of ‘Falcon II’ tall fescue were established in polyvinylchloride (PVC) tubes (10 cm diameter × 40 cm long) filled with a mixture of sand and fritted clay [9:1 (v:v)] and then placed in growth chambers. Reference evapotranspiration rate [ETo (millimeters of water per day)] was determined by weighing the PVC tubes containing well-watered turfgrass every 3 days to determine water loss on a daily basis as ETo. Deficit irrigation treatments were applied as follows: well-watered control, mild drought stress (60% ETo), and severe drought stress (20% ETo). Leaf water content was lower at 6, 12, and 20 days of treatment for the 20% ETo treatment and 20 days after treatment began for the 60% ETo treatment. Compared with the well-watered control, ψS was lower in the 60% ETo treatment on all three measurement dates. Sucrose was higher at 8 and 14 days after treatment began in the 60% ETo treatment and on all three measurement dates in the 20% ETo treatment relative to the well-watered control. No difference in sucrose level was observed between the 20% ETo and 60% ETo irrigation regimes at 8 and 14 days of treatment. Beginning 14 days after treatment, tall fescue had a higher level of SPS in the 60% ETo and 20% ETo treatments compared with the well-watered treatment. Tall fescue receiving 60% or 20% ETo had a lower level of AI activity on all measurement dates. Results suggest that the decrease in ψS was accompanied by higher sucrose levels, which were the result of the increased level of SPS and SS activity and a decline in AI activity.


HortScience ◽  
2015 ◽  
Vol 50 (8) ◽  
pp. 1148-1154 ◽  
Author(s):  
Yu Cui ◽  
Jinsheng Wang ◽  
Xingchun Wang ◽  
Yiwei Jiang

Perennial ryegrass (Lolium perenne L.) is a popular cool-season forage and turfgrass in temperate regions. Due to its self-incompatible and out-crossing nature, perennial ryegrass may show a high degree of heterozygosity. Perennial ryegrass generally is susceptible to drought stress, but variations of drought response of individual genotypes within a particular accession or cultivar are not well understood. The objective of this study was to characterize phenotypic diversity of drought tolerance within and among accessions in relation to genetic diversity in perennial ryegrass. Five individual genotypes from each of six accessions varying in origin and growth habits were subjected to drought stress in a greenhouse. Leaf wilting, plant height, chlorophyll fluorescence (Fv/Fm) and leaf water content (LWC) differed significantly among accessions as well as among genotypes within each accession under well-watered control and drought stress conditions. Fv/Fm was highly correlated with LWC under drought stress. Genetic diversity among and within accessions were identified by using previously characterized 23 simple sequence repeat markers. Across accessions, the mean major allele frequency, gene diversity, and heterozygosity values were 0.66, 0.43, and 0.66, respectively. Accessions with closer genetic distance generally had similar drought responses, while accessions with greater genetic distance showed distinct drought tolerance. Significant differences in drought tolerance among and within accessions, especially for individual genotypes within one accession, indicated that variations of drought response could be used for enhancing breeding programs and studying molecular mechanisms of stress tolerance in perennial ryegrass.


2021 ◽  
Author(s):  
Sean M. Robertson ◽  
Solihu Kayode Sakariyahu ◽  
Ayooluwa J. Bolaji ◽  
Mark F Belmonte ◽  
Olivia Wilkins

Drought stress negatively impacts the health of long-lived trees. Understanding the genetic mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. We aimed to determine how hybrid poplars respond to prolonged and uniform exposure to drought; how responses to moderate and more severe growth-limiting drought stresses differed; and, how drought responses change throughout the day. We established hybrid poplar trees (Populus x 'Okanese') from unrooted stem cutting with abundant soil moisture for six weeks. We then withheld water to establish well-watered, moderate, and severe growth-limiting drought conditions. These conditions were maintained for three weeks during which growth was monitored. We then measured photosynthetic rates and transcriptomes of leaves that had developed during the drought treatments at two times of day. The moderate and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates, and global transcriptome profiles. Notably, the time of day of sampling produced the strongest signal in the transcriptome data. The moderate drought treatment elicited global transcriptome changes that were intermediate to the severe and well-watered treatments in the early evening, but did not elicit a strong drought response in the morning, emphasizing the complex nature of drought regulation in long-lived trees.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Shu Meng ◽  
Shaohua Zhan ◽  
Wanchen Dou ◽  
Wei Ge

Abstract Background ALKBH7 is a mitochondrial protein, involved in programmed necrosis, fatty acid metabolism, cell cycle regulation, and prostate cancer disease. However, the exact roles of ALKBH7 and the underlying molecular mechanisms remain mysterious. Thus, investigations of the interactome and proteomic responses of ALKBH7 in cell lines using proteomics strategies are urgently required. Methods In the present study, we investigated the interactome of ALKBH7 in mitochondria through immunoprecipitation-mass spectrometry/mass spectrometry (IP-MS/MS). Additionally, we established the ALKBH7 knockdown and overexpression cell lines and further identified the differentially expressed proteins (DEPs) in these cell lines by TMT-based MS/MS. Two DEPs (UQCRH and HMGN1) were validated by western blotting analysis. Results Through bioinformatic analysis the proteomics data, we found that ALKBH7 was involved in protein homeostasis and cellular immunity, as well as cell proliferation, lipid metabolism, and programmed necrosis by regulating the expression of PTMA, PTMS, UQCRH, HMGN1, and HMGN2. Knockdown of ALKBH7 resulted in upregulation of UQCRH and HMGN1 expression, and the opposite pattern of expression was detected in ALKBH7 overexpression cell lines; these results were consistent with our proteomics data. Conclusion Our findings indicate that the expression of UQCRH and HMGN1 is regulated by ALKBH7, which provides potential directions for future studies of ALKBH7. Furthermore, our results also provide comprehensive insights into the molecular mechanisms and pathways associated with ALKBH7.


Author(s):  
Markus Kränzlein ◽  
Christoph-Martin Geilfus ◽  
Bastian L. Franzisky ◽  
Xudong Zhang ◽  
Monika A. Wimmer ◽  
...  

AbstractMaize is the most important crop worldwide in terms of production and yield, but every year a considerable amount of yield is lost due to drought. The foreseen increase in the number of drought spells due to climate change raises the question whether the ability to recover quickly after a water pulse may be a relevant trait for overall drought resistance. We here address the following hypotheses: (i) different maize hybrids exhibit distinct physiological adaptive responses to drought stress and (ii) these responses affect the ability to recover from the stress. (iii) The relative biomass production of maize hybrids, which show severe drought symptoms but are able to recover quickly after a water pulse, is comparable to those hybrids, which invest more energy into tolerance mechanisms. The physiological responses of eight maize hybrids to repeated drought were elucidated employing physiological parameters such as electrolyte leakage, osmolality, relative water content, growth rate and gas-exchange measurements. Only one hybrid was able to maintain biomass production under drought conditions. Amongst the others, two hybrids with similar growth inhibition but contrasting physiological responses were identified by a PCA analysis. Both strategies, i.e. stabilization of leaf water content via resistance mechanisms versus high recovery potential were equally effective in maintaining aboveground biomass production in the scenario of a long drought intermitted by a water-pulse. However, each strategy might be advantageous under different drought stress scenarios. Overall, the recovery potential is underestimated in drought resistance under natural conditions, which includes periodic cycles of drought and rewatering, and should be considered in screening trials.


2021 ◽  
Vol 89 (1) ◽  
Author(s):  
Endah NURWAHYUNI ◽  
Eka Tarwaca Susila PUTRA

Oil palm productivity in Indonesia faces challenges related to drought that occur during the dry season. Calcium is an element that plays a role in determining the response of plant resistance to drought through biochemical activity. This study aims to determine the contribution of calcium in biochemical mechanisms involving various antioxidants. The treatment was arranged in factorial of 3 x 4 in a split-plot design. The first factor was calcium dosage, which consisted of 0 g (control/without calcium), 0.04 g, 0.08 g, and 0.12 g of calcium per plant. The second factor was the intensity of drought stress, referred as the Fraction of Transpirable Soil Water (FTSW) at 1 (control/field capacity), 0.35 (moderate drought), and 0.15 (severe drought) with a week duration of intensity. Calcium was applied in a ring placement on four-month-old seedlings planted in 40 x 40 cm polybags with alfisol soil planting medium and given drought treatment two months later for three weeks. The results showed that calcium could induce plant response to drought through the increase in superoxide dismutase (SOD) activity, the decrease in hydrogen peroxide   (H₂O₂) concentration, and the decrease in malondialdehyde (MDA) concentration. The study concluded that calcium is an essential element used to reduce the effects of drought on oil palm seedlings through the change of biochemical activities regulated by enzymatic antioxidants.


2021 ◽  
pp. 873-878
Author(s):  
Zhengong Yin ◽  
Xianxin Meng ◽  
Qiang Wang ◽  
Yifan Guo ◽  
Shuhong Wei ◽  
...  

Drought is one of the most severe environmental constraints which reduces common bean production worldwide. Exploration of the physiological mechanism of common bean under drought stress is important for the efficient production and variety selection of common beans. In the present study, non-droughtresistant variety (Longyundou10) and drought-resistant variety (Longyundou17) were identified to elucidate the effects of drought stress on antioxidant system of common beans at seedling stage. Under drought stress, APX and SOD activities showed a single peak curve that first increased and then decreased, and the dynamic changes of CAT and POD activities were more complicated. Under different levels of drought treatment, the average values of APX, SOD, CAT and POD activities of common bean were found to be higher than those of normal water conditions, and the average values were the highest under severe drought stress, indicating that these antioxidant enzymes were stimulated under drought stress. Bangladesh J. Bot. 50(3): 873-878, 2021 (September) Special


Sign in / Sign up

Export Citation Format

Share Document