scholarly journals Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions

2019 ◽  
Vol 11 (24) ◽  
pp. 2947 ◽  
Author(s):  
Daniel Žížala ◽  
Robert Minařík ◽  
Tereza Zádorová

The image spectral data, particularly hyperspectral data, has been proven as an efficient data source for mapping of the spatial variability of soil organic carbon (SOC). Multispectral satellite data are readily available and cost-effective sources of spectral data compared to costly and technically demanding processing of hyperspectral data. Moreover, their continuous acquisition allows to develop a composite from time-series, increasing the spatial coverage of SOC maps. In this study, an evaluation of the prediction ability of models assessing SOC using real multispectral remote sensing data from different platforms was performed. The study was conducted on a study plot (1.45 km2) in the Chernozem region of South Moravia (Czechia). The adopted methods included field sampling and predictive modeling using satellite multispectral Sentinel-2, Landsat-8, and PlanetScope data, and multispectral UAS Parrot Sequoia data. Furthermore, the performance of a soil reflectance composite image from Sentinel-2 data was analyzed. Aerial hyperspectral CASI 1500 and SASI 600 data was used as a reference. Random forest, support vector machine, and the cubist regression technique were applied in the predictive modeling. The prediction accuracy of models using multispectral data, including Sentinel-2 composite, was lower (RPD range from 1.16 to 1.65; RPIQ range from 1.53 to 2.17) compared to the reference model using hyperspectral data (RPD = 2.26; RPIQ = 3.34). The obtained results show very similar prediction accuracy for all spaceborne sensors (Sentinel-2, Landsat-8, and PlanetScope). However, the spatial correlation between the reference mapping results obtained from the hyperspectral data and other maps using multispectral data was moderately strong. UAS sensors and freely available satellite multispectral data can represent an alternative cost-effective data source for remote SOC mapping on the local scale.

2021 ◽  
Vol 11 (23) ◽  
pp. 11486
Author(s):  
Shahab Ud Din ◽  
Khan Muhammad ◽  
Muhammad Fawad Akbar Khan ◽  
Shahid Bashir ◽  
Muhammad Sajid ◽  
...  

Despite low spatial resolutions, thermal infrared bands (TIRs) are generally more suitable for mineral mapping due to fundamental tones and high penetration in vegetated areas compared to shortwave infrared (SWIR) bands. However, the weak overtone combinations of SWIR bands for minerals can be compensated by fusing SWIR-bearing data (Sentinel-2 and Landsat-8) with other multispectral data containing fundamental tones from TIR bands. In this paper, marble in a granitic complex in Mardan District (Khyber Pakhtunkhwa) in Pakistan is discriminated by fusing feature-oriented principal component selection (FPCS) obtained from the ASTER, Landsat-8 Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS) and Sentinel-2 MSI data. Cloud computing from Google Earth Engine (GEE) was used to apply FPCS before and after the decorrelation stretching of Landsat-8, ASTER, and Sentinel-2 MSI data containing five (5) bands in the Landsat-8 OLI and TIRS and six (6) bands each in the ASTER and Sentinel-2 MSI datasets, resulting in 34 components (i.e., 2 × 17 components). A weighted linear combination of selected three components was used to map granite and marble. The samples collected during field visits and petrographic analysis confirmed the remote sensing results by revealing the region’s precise contact and extent of marble and granite rock types. The experimental results reflected the theoretical advantages of the proposed approach compared with the conventional stacking of band data for PCA-based fusion. The proposed methodology was also applied to delineate granite deposits in Karoonjhar Mountains, Nagarparker (Sindh province) and the Kotah Dome, Malakand (Khyber Pakhtunkhwa Province) in Pakistan. The paper presents a cost-effective methodology by the fusion of FPCS components for granite/marble mapping during mineral resource estimation. The importance of SWIR-bearing components in fusion represents minor minerals present in granite that could be used to model the engineering properties of the rock mass.


2021 ◽  
Vol 2 ◽  
Author(s):  
Gurjinder S. Baath ◽  
K. Colton Flynn ◽  
Prasanna H. Gowda ◽  
Vijaya Gopal Kakani ◽  
Brian K. Northup

Finger millet (Eleusine coracana Gaertn L.) is an important grain crop for small farmers in many countries. Reliable estimates of crop parameters, such as crop growth and nitrogen (N) content, through remote sensing techniques can improve in-season management of finger millet. This study investigated the relationships of hyperspectral reflectance with canopy height, green canopy cover, leaf area index (LAI), and N concentrations of finger millet using an optimal waveband selection procedure with partial least square regression (PLSR). Predictive performance of 13 vegetation indices (VIs) computed from the original hyperspectral data as well as synthesized Landsat-8 and Sentinel-2 data were evaluated and compared for estimating various crop parameters with simple linear regression (SLR) and multilinear regression (MLR) models. The optimal wavebands determined by PLSR were mostly concentrated within 1,000–1,100 nm for both LAI and dry biomass but were scattered for other canopy parameters. The SLR statistics resulted in the simple ratio pigment index (SRPI) and red/green index (RGI) performing best when predicting LAI (R2v = 0.53–0.59) and canopy cover (R2v = 0.72–0.76). The blue/green index (BGI1) was strongly related to canopy height (R2v = 0.65–0.78), dry biomass (R2v = 0.42–0.49), and N concentration (R2v = 0.70–0.83) of finger millet, regardless of spectral resolutions. The MLR approach, using four maximum VIs as input variables, improved the prediction accuracy of N concentration by 14% compared to both SLR and waveband selection methods. VIs computed from synthesized Landsat-8 and Sentinel-2 satellite data resulted in similar or greater prediction accuracy than hyperspectral data for various canopy parameters of finger millet, indicating publicly accessible multispectral data could serve as alternative to hyperspectral data for improved crop management decisions via precision agriculture.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 68
Author(s):  
Sarah A. Lewis ◽  
Peter R. Robichaud ◽  
Andrew T. Hudak ◽  
Eva K. Strand ◽  
Jan U. H. Eitel ◽  
...  

As wildland fires amplify in size in many regions in the western USA, land and water managers are increasingly concerned about the deleterious effects on drinking water supplies. Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises the concern of the risk of water contamination via ash. The persistence of ash cover and depth were monitored for up to 90 days post-fire at nearly 100 plots distributed between two wildfires in Idaho and Washington, USA. Our goal was to determine the most ‘cost’ effective, operational method of mapping post-wildfire ash cover in terms of financial, data volume, time, and processing costs. Field measurements were coupled with multi-platform satellite and aerial imagery collected during the same time span. The image types spanned the spatial resolution of 30 m to sub-meter (Landsat-8, Sentinel-2, WorldView-2, and a drone), while the spectral resolution spanned visible through SWIR (short-wave infrared) bands, and they were all collected at various time scales. We that found several common vegetation and post-fire spectral indices were correlated with ash cover (r = 0.6–0.85); however, the blue normalized difference vegetation index (BNDVI) with monthly Sentinel-2 imagery was especially well-suited for monitoring the change in ash cover during its ephemeral period. A map of the ash cover can be used to estimate the ash load, which can then be used as an input into a hydrologic model predicting ash transport and fate, helping to ultimately improve our ability to predict impacts on downstream water resources.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


Author(s):  
M. Papadomanolaki ◽  
M. Vakalopoulou ◽  
S. Zagoruyko ◽  
K. Karantzalos

In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multispectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution satellite multispectral datasets. In particular, the performed benchmark included the <i>AlexNet</i>, <i>AlexNet-small</i> and <i>VGG</i> models which had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models managed to classify the different land cover classes with significantly high accuracy rates <i>i.e.</i>, above 99.9%. The experimental results demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral remote sensing data.


ACTA IMEKO ◽  
2016 ◽  
Vol 5 (2) ◽  
pp. 44 ◽  
Author(s):  
Pia Addabbo ◽  
Mariano Focareta ◽  
Salvo Marcuccio ◽  
Claudio Votto ◽  
Silvia Liberata Ullo

<p class="Abstract"><span lang="EN-US">With the entry into operation of the Sentinel-2 mission in June 2015, a new land monitoring costellation of twin satellites has been added to Copernicus project from ESA and new insights have been derived through the combination of Sentinel-2 data with other optical/multispectral data, and with other data from satellites belonging to the same Copernicus  project.  To this end, the objective of this paper has been to present new added-value tools first through the integration of different satellite platforms: data from NASA Landsat-8 and ESA Sentinel-1 have been used and combined, and furthermore through the comparison of satellite data all from the same Copernicus project: data from Sentinel-1 and Sentinel-2 have been jointly processed and compared. Although data from optical/multispectral sensors, as those of Landsat-8 and Sentinel-2, and data from SAR on board of Sentinel-1,  are very different,  their combination provides useful and interesting results. The integration and combination of these data can find useful application in many fields from oceans to waterways, from land surfaces to fossil deposits, from vegetation to forest areas. In this works authors have focused their interest in green areas and vegetation monitoring applications, by choosing as case of interest the Royal Palace of Caserta and its gardens.  The idea has started from the increasing interest in monitoring  the cultural heritage monuments and in particular  the surrounding vegetation with the green areas and the parks inside. Satellite images can put into evidence boundaries modifications, the vegetation state, their possible degradation, and other phenomena such as changes in the territories due both to natural and to anthropogenic causes. Data combination from different sources as above specified gives a good number of indexes very useful to analyze the vegetation state and its health in a very deep way. Many of these indexes have been calculated and discussed for investigation.</span></p>


2021 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Bayu Raharja ◽  
Agung Setianto ◽  
Anastasia Dewi Titisari

Using remote sensing data for hydrothermal alteration mapping beside saving time and reducing  cost leads to increased accuracy. In this study, the result of multispectral remote sensing tehcniques has been compare for manifesting hydrothermal alteration in Kokap, Kulon Progo. Three multispectral images, including ASTER, Landsat 8, and Sentinel-2, were compared in order to find the highest overall accuracy using principle component analysis (PCA) and directed component analysis (DPC). Several subsets band combinations were used as PCA and DPC input to targeting the key mineral of alteration. Multispectral classification with the maximum likelihood algorithm was performed to map the alteration types based on training and testing data and followed by accuracy evaluation. Two alteration zones were succeeded to be mapped: argillic zone and propylitic zone. Results of these image classification techniques were compared with known alteration zones from previous study. DPC combination of band ratio images of 5:2 and 6:7 of Landsat 8 imagery yielded a classification accuracy of 56.4%, which was 5.05% and 10.13% higher than those of the ASTER and Sentinel-2 imagery. The used of DEM together with multispectral images was increase the accuracy of hydrothermal alteration mapping in the study area.


2020 ◽  
Vol 171 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Luzia Götz ◽  
Achilleas Psomas ◽  
Harald Bugmann

Early detection of bark beetle infestations by remote sensing: what is feasible today? Infestation by the Norway spruce (Picea abies) bark beetle (Ips typographus) in uniform forest stands of the high montane and subalpine stage is a major challenge for management. It is impossible to identify in time all susceptible or already infested spruces in the often steep terrain solely by terrestrial observations and to prevent the proliferation of the beetle. A time-saving, cost-effective and effective method for finding these spruces is necessary and remote sensing techniques appear promising. Therefore, we investigated the potential of hyperspectral remote sensing data for the early detection of stressed or infested spruces using a case study in the experimental forest of the Swiss Federal Institute of Technology Zurich (ETHZ) in Sedrun. The approach that we developed is based on a combination of field surveys, hyperspectral data, vegetation indices calculated from these and their classification into the three classes “dead”, “stressed” and “healthy” using Random Forests, a machine-learning approach. We demonstrate that stressed spruces can be identified with this approach, but it is not yet ready for operational use. In particular, a slope-specific calibration of the method is necessary, which makes practical application impossible.


Author(s):  
Terry Devara ◽  
Arie Wahyu Wijayanto

Statistics Indonesia (BPS) has been introducing the use of Area Sampling Frame (ASF) surveys from 2018 to estimate rice production areas, although the process continues to suffer from the high costs of human and other resources. To support this type of conventional field survey, a more scalable and inexpensive approach using publicly-available remote sensing data, for example from the Sentinel-2 and Landsat-8 satellites, has been explored. In this research, we compare the performance gain from Sentinel-2 and Landsat-8 images using a multiple composite-index enriched machine learning classifier to detect rice production areas located in Nganjuk, East Java, Indonesia as a case study area. We build a detection model from a set of machine learning classifiers, Decision Tree (CART), Support Vector Machine, Logistic Regression, Ensemble Bagging Methods (Random Forest and Extra Trees), and Ensemble Boosting Methods (AdaBoost and XGBoost). The composite indices consist of the NDVI and EVI for agricultural and forest areas, NDWI for water and cloud, and NDBI, NDTI, and BSI for built-up areas, fallows, and asphalt-based roads. Validated by k-fold cross-validation, Sentinel-2 and Landsat-8 achieved F1-scores of 0.930 and 0.919 respectively at the scale of 30 meters per pixel. Using a 10 meter resolution per pixel for the Sentinel-2 imagery showed an increased F1-score of up to 0.971. Our evaluation shows that the higher spatial resolution imagery of Sentinel-2 achieves a better prediction, not only performance-wise, but also as a better representation of actual conditions.


Sign in / Sign up

Export Citation Format

Share Document