scholarly journals RAINBOW: An Operational Oriented Combined IR-Algorithm

2020 ◽  
Vol 12 (15) ◽  
pp. 2444
Author(s):  
Leo Pio D’Adderio ◽  
Silvia Puca ◽  
Gianfranco Vulpiani ◽  
Marco Petracca ◽  
Paolo Sanò ◽  
...  

In this paper, precipitation estimates derived from the Italian ground radar network (IT GR) are used in conjunction with Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements to develop an operational oriented algorithm (RAdar INfrared Blending algorithm for Operational Weather monitoring (RAINBOW)) able to provide precipitation pattern and intensity. The algorithm evaluates surface precipitation over five geographical boxes (in which the study area is divided). It is composed of two main modules that exploit a second-degree polynomial relationship between the SEVIRI brightness temperature at 10.8 µm TB10.8 and the precipitation rate estimates from IT GR. These relationships are applied to each acquisition of SEVIRI in order to provide a surface precipitation map. The results, based on a number of case studies, show good performance of RAINBOW when it is compared with ground reference (precipitation rate map from interpolated rain gauge measurements), with high Probability of Detection (POD) and low False Alarm Ratio (FAR) values, especially for light to moderate precipitation range. At the same time, the mean error (ME) values are about 0 mmh−1, while root mean square error (RMSE) is about 2 mmh−1, highlighting a limited variability of the RAINBOW estimations. The precipitation retrievals from RAINBOW have been also compared with the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF) official microwave (MW)/infrared (IR) combined product (P-IN-SEVIRI). RAINBOW shows better performances than P-IN-SEVIRI, in terms of both detection and estimates of precipitation fields when they are compared to the ground reference. RAINBOW has been designed as an operational product, to provide complementary information to that of the national radar network where the IT GR coverage is absent, or the quality (expressed in terms of Quality Index (QI)) of the RAINBOW estimates is low. The aim of RAINBOW is to complement the radar and rain gauge network supporting the operational precipitation monitoring.

2020 ◽  
Vol 21 (7) ◽  
pp. 1549-1569 ◽  
Author(s):  
Pravat Jena ◽  
Sourabh Garg ◽  
Sarita Azad

AbstractThe presence of a sparse rain gauge network in complex terrain like the Himalayas has encouraged the present study for the concerned evaluation of Indian Meteorological Department (IMD) ground-based gridded rainfall data for highly prevalent events like cloudbursts over the northwest Himalayas (NWH). To facilitate the abovementioned task, we intend to evaluate the performance of these observations at 0.25° × 0.25° (latitude–longitude) resolution against a predefined threshold (i.e., 99.99th percentile), thereby initially comprehending the success of IMD data in capturing the cloudburst events reported in media during 2014–16. Further, seven high-resolution satellite products, namely, CMORPH V0.x, PERSIANN-CDR, TMPA 3B42RT V7, IMERG V06B, INSAT-3D multispectral rainfall (IMR), CHIRPS V.2, and PERSIANN-CCS are evaluated against the IMD dataset. The following are our main results. 1) Six out of 18 cloudburst events are detected using IMD gridded data. 2) The contingency statistics at the 99.99th percentile reveal that the probability of detection (POD) of TMPA varies from 19.4% to 53.9% over the geographical stretch of NWH, followed by PERSIANN-CDR (18.6%–48.4%) and IMERG (4.9%–17.8%). 3) A new metric proposed as improved POD (IPOD) has been developed in this work, which takes into account the temporal lag that exists between observed and satellite estimates during an event period. Results show that for an event analysis IPOD provides a better comparison. The IPOD for TMPA is 32.8%–74.4%, followed by PERSIANN-CDR (34.4%–69.11%) and IMERG (15.3%–39.0%). 4) The conclusion stands as precipitation estimates obtained from CHIRPS are most suitable for monitoring cloudburst events over NWH with IPOD of 60.5%–78.6%.


Jalawaayu ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 39-56
Author(s):  
Bharat Badayar Joshi ◽  
Munawar Ali ◽  
Dibit Aryal ◽  
Laxman Paneru ◽  
Bhaskar Shrestha

Precipitation in a mountainous region is highly variable due to the complex terrain. Satellite-based precipitation estimates are potential alternatives to gauge measurements in these regions, as these typical measurements are not available or are scarce in high elevation areas. However, the accuracy of these gridded precipitation datasets need to be addressed before further usage. In this study, an evaluation of the spatial precipitation pattern in satellite-based precipitation products is provided, including satellite-only (Integrated Multi satellite Retrievals for GPM IMERG-UCORR and Global Satellite Mapping of Precipitation (GSMaP-MVK) and gauge calibrated (IMERG-CORR and GSMaP-Gauge) products, with a spatial resolution of 0.1°, which is compared to 387-gauge measurements in Nepal from April 2014 to December 2016. The major results are as follows: (1) The gauge calibrated version 5 IMERG-CORR and version 6 GSMaP-Gauge are relatively better than the satellite-only datasets, although they all underestimate the observed precipitation. (2) The daily gauge calibrated GSMaP-Gauge performs fairly well in low and mid-elevation areas, whereas the monthly gauge calibrated IMERG-C performs better in high-elevation areas. (3) For the daily time scale, IMERG-CORR shows a better ability to detect the true precipitation (higher Probability of Detection (POD)) and (lowest False Alarm Ratio (FAR)) events among all datasets. However, all four satellite-based precipitation datasets accurately detect (Critical Success Index (CSI) >40%) precipitation and no-precipitation events. The results of this work provide the systematic quantification of IMERG and GSMaP of satellite precipitation products over Nepal using station observations and delivers a helpful statistical basis for the selection of these datasets for future scientific research.


2021 ◽  
Author(s):  
Nobuyuki Utsumi ◽  
F. Joseph Turk ◽  
Ziad. S. Haddad ◽  
Pierre-Emmanuel Kirstetter ◽  
Hyungjun Kim

<p>Passive microwave (MW) observation from low Earth-orbiting satellites is one of the major sources of information for global precipitation monitoring. Although various precipitation retrieval techniques based on passive MW observation have been developed, most of them focus on estimating precipitation rate at near surface height. Vertical profile information of precipitation is meaningful for process-based understanding of precipitation systems. Also, a previous study found that the use of the vertical precipitation profile information can improve sub-hourly surface precipitation estimates (Utsumi et al., 2019).</p><p>This study investigates the precipitation vertical profiles estimated by two passive MW algorithms, i.e., the Emissivity Principal Components (EPC) algorithm developed by authors (Turk et al., 2018; Utsumi et al., 2021) and the Goddard Profiling Algorithm (GPROF). The vertical profiles of condensed water content estimated by the two passive MW algorithms for the Global Precipitation Measurement Microwave Imager (GMI) observations are validation with the GMI + Dual-frequency Precipitation Radar combined algorithm (CMB) for June 2014 – May 2015. The condensed water content profiles estimated by the passive MW algorithms show biases in their magnitude (i.e., EPC underestimates the magnitude by 20 – 50% in the middle-to-high latitudes; GPROF overestimates the magnitude by 20 – 50% in the middle-to-high latitudes and more than 50% overestimation in the tropics). On the other hand, the shapes of the profiles are reproduced well by the passive MW algorithms. The relationship between the estimation performances of surface precipitation rate and vertical profiles are also investigated. It is shown that the error in the profile magnitude shows a clear positive relationship with the surface precipitation error. The estimation performance of the profile shapes also shows connection with the surface precipitation error. This result indicates that physically reasonable connections between the surface precipitation estimate and its associated profiles are achieved to some extent by the passive MW algorithms. This also implies that properly constraining physical parameters of the precipitation profiles would lead to the improvements of the surface precipitation estimates.</p><p>References</p><p>Utsumi, N., Kim, H., Turk, F. J., & Haddad, Ziad. S. (2019). Improving Satellite-Based Subhourly Surface Rain Estimates Using Vertical Rain Profile Information. Journal of Hydrometeorology, 20(5), 1015–1026.</p><p>Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., You, Y., & Ringerud, S. (2018). An observationally based method for stratifying a priori passive microwave observations in a Bayesian-based precipitation retrieval framework. Quarterly Journal of the Royal Meteorological Society, 144(S1), 145–164.</p><p>Utsumi, N., Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., & Kim, H. (2021). Evaluation of Precipitation Vertical Profiles Estimated by GPM-Era Satellite-Based Passive Microwave Retrievals. Journal of Hydrometeorology, 22(1), 95–112.</p>


2020 ◽  
Vol 21 (2) ◽  
pp. 161-182 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Eduardo García-Ortega ◽  
Andrés Merino ◽  
José Luis Sánchez ◽  
...  

AbstractAfter 5 years in orbit, the Global Precipitation Measurement (GPM) mission has produced enough quality-controlled data to allow the first validation of their precipitation estimates over Spain. High-quality gauge data from the meteorological network of the Spanish Meteorological Agency (AEMET) are used here to validate Integrated Multisatellite Retrievals for GPM (IMERG) level 3 estimates of surface precipitation. While aggregated values compare notably well, some differences are found in specific locations. The research investigates the sources of these discrepancies, which are found to be primarily related to the underestimation of orographic precipitation in the IMERG satellite products, as well as to the number of available gauges in the GPCC gauges used for calibrating IMERG. It is shown that IMERG provides suboptimal performance in poorly instrumented areas but that the estimate improves greatly when at least one rain gauge is available for the calibration process. A main, generally applicable conclusion from this research is that the IMERG satellite-derived estimates of precipitation are more useful (r2 > 0.80) for hydrology than interpolated fields of rain gauge measurements when at least one gauge is available for calibrating the satellite product. If no rain gauges were used, the results are still useful but with decreased mean performance (r2 ≈ 0.65). Such figures, however, are greatly improved if no coastal areas are included in the comparison. Removing them is a minor issue in terms of hydrologic impacts, as most rivers in Spain have their sources far from the coast.


2016 ◽  
Vol 8 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Sunil Ghaju ◽  
Knut Alfredsen

High spatial variability of precipitation over Nepal demands dense network of rain-gauge stations. But to set-up a dense rain gauge network is almost impossible due to mountainous topography of Nepal. Also the dense rain gauge network will be very expensive and some time impossible for timely maintenance. Satellite precipitation products are an alternative way to collect precipitation data with high temporal and spatial resolution over Nepal. In this study, the satellite precipitation products TRMM and GSMaP were analyzed. Precipitation was compared with ground based gauge precipitation in the Narayani basin, while the applicability of these rainfall products for runoff simulation were tested using the LANDPINE model for Trishuli basin which is a sub-basin within Narayani catchment. The Nash-Sutcliffe efficiency calculated for TRMM and GSMaP from point to pixel comparison is negative for most of stations. Also the estimation bias for both the products is negative indicating under estimation of precipitation by satellite products, with least under estimation for the GSMaP precipitation product. After point to pixel comparison, satellite precipitation estimates were used for runoff simulation in the Trishuli catchment with and without bias correction for each product. Among the two products, TRMM shows good simulation result without any bias correction for calibration and validation period with scaling factor of 2.24 for precipitation which is higher than that for gauge precipitation. This suggests, it could be used for runoff simulation to the catchments where there is no precipitation station. But it is too early to conclude by just looking into one catchment. So extensive study need to be done to make such conclusion.Journal of Hydrology and Meteorology, Vol. 8(1) p.22-31


2019 ◽  
Vol 11 (21) ◽  
pp. 2463
Author(s):  
Arthur Moraux ◽  
Steven Dewitte ◽  
Bruno Cornelis ◽  
Adrian Munteanu

This paper proposes a multimodal and multi-task deep-learning model for instantaneous precipitation rate estimation. Using both thermal infrared satellite radiometer and automatic rain gauge measurements as input, our encoder–decoder convolutional neural network performs a multiscale analysis of these two modalities to estimate simultaneously the rainfall probability and the precipitation rate value. Precipitating pixels are detected with a Probability Of Detection (POD) of 0.75 and a False Alarm Ratio (FAR) of 0.3. Instantaneous precipitation rate is estimated with a Root Mean Squared Error (RMSE) of 1.6 mm/h.


2015 ◽  
Vol 12 (10) ◽  
pp. 10389-10429
Author(s):  
K. Sunilkumar ◽  
T. Narayana Rao ◽  
S. Satheeshkumar

Abstract. This paper describes the establishment of a dense rain gauge network and small-scale variability in rain storms (both in space and time) over a complex hilly terrain in southeast peninsular India. Three years of high-resolution gauge measurements are used to evaluate 3 hourly rainfall and sub-daily variations of four widely used multisatellite precipitation estimates (MPEs). The network consists of 36 rain gauges arranged in a near-square grid area of 50 km × 50 km with an intergauge distance of ~ 10 km. Morphological features of rainfall in two principal monsoon seasons (southwest monsoon: SWM and northeast monsoon: NEM) show marked seasonal differences. The NEM rainfall exhibits significant spatial variability and most of the rainfall is associated with large-scale systems (in wet spells), whereas the contribution from small-scale systems is considerable in SWM. Rain storms with longer duration and copious rainfall are seen mostly in the western quadrants in SWM and northern quadrants in NEM, indicating complex spatial variability within the study region. The diurnal cycle also exhibits marked spatiotemporal variability with strong diurnal cycle at all the stations (except for 1) during the SWM and insignificant diurnal cycle at many stations during the NEM. On average, the diurnal amplitudes are a factor 2 larger in SWM than in NEM. The 24 h harmonic explains about 70 % of total variance in SWM and only ~ 30 % in NEM. The late night-mid night peak (20:00–02:00 LT) observed during the SWM is attributed to the propagating systems from the west coast during active monsoon spells. Correlograms with different temporal integrations of rainfall data (1, 3, 12, 24 h) show an increase in the spatial correlation with temporal integration, but the correlation remains nearly the same after 12 h of integration in both the monsoons. The 1 h resolution data shows the steepest reduction in correlation with intergauge distance and the correlation becomes insignificant after ~30 km in both monsoons. Evaluation of high-resolution rainfall estimates from various MPEs against the gauge rainfall indicates that all MPEs underestimate the weak and heavy rain. The MPEs exhibit good detection skills of rain at both 3 and 24 h resolutions, however, considerable improvement is observed at 24 h resolution. Among different MPEs, Climate Prediction Centre morphing technique (CMORPH) performs better at 3 hourly resolution in both monsoons. The performance of TRMM multisatellite precipitation analysis (TMPA) is much better at daily resolution than at 3 hourly, as evidenced by better statistical metrics than the other MPEs. All MPEs captured the basic shape of diurnal cycle and the amplitude quite well, but failed to reproduce the weak/insignificant diurnal cycle in NEM.


2021 ◽  
Author(s):  
Jaroslav Pastorek ◽  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Vojtěch Bareš

An inadequate correction for wet antenna attenuation (WAA) often causes a notable bias in quantitative precipitation estimates (QPEs) from commercial microwave links (CMLs) limiting the usability of these rainfall data in hydrological applications. This paper analyzes how WAA can be corrected without dedicated rainfall monitoring for a set of 16 CMLs. Using data collected over 53 rainfall events, the performance of six empirical WAA models was studied, both when calibrated to rainfall observations from a permanent municipal rain gauge network and when using model parameters from the literature. The transferability of WAA model parameters among CMLs of various characteristics has also been addressed. The results show that high-quality QPEs with a bias below 5% and RMSE of 1 mm/h in the median could be retrieved, even from sub-kilometer CMLs where WAA is relatively large compared to raindrop attenuation. Models in which WAA is proportional to rainfall intensity provide better WAA estimates than constant and time-dependent models. It is also shown that the parameters of models deriving WAA explicitly from rainfall intensity are independent of CML frequency and path length and, thus, transferable to other locations with CMLs of similar antenna properties.


2014 ◽  
Vol 18 (7) ◽  
pp. 2559-2576 ◽  
Author(s):  
E. Ricciardelli ◽  
D. Cimini ◽  
F. Di Paola ◽  
F. Romano ◽  
M. Viggiano

Abstract. This study exploits the Meteosat Second Generation (MSG)–Spinning Enhanced Visible and Infrared Imager (SEVIRI) observations to evaluate the rain class at high spatial and temporal resolutions and, to this aim, proposes the Rain Class Evaluation from Infrared and Visible observation (RainCEIV) technique. RainCEIV is composed of two modules: a cloud classification algorithm which individuates and characterizes the cloudy pixels, and a supervised classifier that delineates the rainy areas according to the three rainfall intensity classes, the non-rainy (rain rate value < 0.5 mm h-1) class, the light-to-moderate rainy class (0.5 mm h−1 ≤ rain rate value < 4 mm h-1), and the heavy–to-very-heavy-rainy class (rain rate value ≥ 4 mm h-1). The second module considers as input the spectral and textural features of the infrared and visible SEVIRI observations for the cloudy pixels detected by the first module. It also takes the temporal differences of the brightness temperatures linked to the SEVIRI water vapour channels as indicative of the atmospheric instability strongly related to the occurrence of rainfall events. The rainfall rates used in the training phase are obtained through the Precipitation Estimation at Microwave frequencies, PEMW (an algorithm for rain rate retrievals based on Atmospheric Microwave Sounder Unit (AMSU)-B observations). RainCEIV's principal aim is that of supplying preliminary qualitative information on the rainy areas within the Mediterranean Basin where there is no radar network coverage. The results of RainCEIV have been validated against radar-derived rainfall measurements from the Italian Operational Weather Radar Network for some case studies limited to the Mediterranean area. The dichotomous assessment related to daytime (nighttime) validation shows that RainCEIV is able to detect rainy/non-rainy areas with an accuracy of about 97% (96%), and when all the rainy classes are considered, it shows a Heidke skill score of 67% (62%), a bias score of 1.36 (1.58), and a probability of detection of rainy areas of 81% (81%).


2007 ◽  
Vol 8 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Yang Hong ◽  
David Gochis ◽  
Jiang-tao Cheng ◽  
Kuo-lin Hsu ◽  
Soroosh Sorooshian

Abstract Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated against warm season precipitation observations from the North American Monsoon Experiment (NAME) Event Rain Gauge Network (NERN) in the complex terrain region of northwestern Mexico. Analyses of hourly and daily precipitation estimates show that the PERSIANN-CCS captures well active and break periods in the early and mature phases of the monsoon season. While the PERSIANN-CCS generally captures the spatial distribution and timing of diurnal convective rainfall, elevation-dependent biases exist, which are characterized by an underestimate in the occurrence of light precipitation at high elevations and an overestimate in the occurrence of precipitation at low elevations. The elevation-dependent biases contribute to a 1–2-h phase shift of the diurnal cycle of precipitation at various elevation bands. For reasons yet to be determined, the PERSIANN-CCS significantly underestimated a few active periods of precipitation during the late or “senescent” phase of the monsoon. Despite these shortcomings, the continuous domain and relatively high spatial resolution of PERSIANN-CCS quantitative precipitation estimates (QPEs) provide useful characterization of precipitation space–time structures in the North American monsoon region of northwestern Mexico, which should prove useful for hydrological applications.


Sign in / Sign up

Export Citation Format

Share Document