scholarly journals Improving Accuracy of Herbage Yield Predictions in Perennial Ryegrass with UAV-Based Structural and Spectral Data Fusion and Machine Learning

2021 ◽  
Vol 13 (17) ◽  
pp. 3459
Author(s):  
Joanna Pranga ◽  
Irene Borra-Serrano ◽  
Jonas Aper ◽  
Tom De Swaef ◽  
An Ghesquiere ◽  
...  

High-throughput field phenotyping using close remote sensing platforms and sensors for non-destructive assessment of plant traits can support the objective evaluation of yield predictions of large breeding trials. The main objective of this study was to examine the potential of unmanned aerial vehicle (UAV)-based structural and spectral features and their combination in herbage yield predictions across diploid and tetraploid varieties and breeding populations of perennial ryegrass (Lolium perenne L.). Canopy structural (i.e., canopy height) and spectral (i.e., vegetation indices) information were derived from data gathered with two sensors: a consumer-grade RGB and a 10-band multispectral (MS) camera system, which were compared in the analysis. A total of 468 field plots comprising 115 diploid and 112 tetraploid varieties and populations were considered in this study. A modelling framework established to predict dry matter yield (DMY), was used to test three machine learning algorithms, including Partial Least Squares Regression (PLSR), Random Forest (RF), and Support Vector Machines (SVM). The results of the nested cross-validation revealed: (a) the fusion of structural and spectral features achieved better DMY estimates as compared to models fitted with structural or spectral data only, irrespective of the sensor, ploidy level or machine learning algorithm applied; (b) models built with MS-based predictor variables, despite their lower spatial resolution, slightly outperformed the RGB-based models, as lower mean relative root mean square error (rRMSE) values were delivered; and (c) on average, the RF technique reported the best model performances among tested algorithms, regardless of the dataset used. The approach introduced in this study can provide accurate yield estimates (up to an RMSE = 308 kg ha−1) and useful information for breeders and practical farm-scale applications.

2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 617
Author(s):  
Umer Saeed ◽  
Young-Doo Lee ◽  
Sana Ullah Jan ◽  
Insoo Koo

Sensors’ existence as a key component of Cyber-Physical Systems makes it susceptible to failures due to complex environments, low-quality production, and aging. When defective, sensors either stop communicating or convey incorrect information. These unsteady situations threaten the safety, economy, and reliability of a system. The objective of this study is to construct a lightweight machine learning-based fault detection and diagnostic system within the limited energy resources, memory, and computation of a Wireless Sensor Network (WSN). In this paper, a Context-Aware Fault Diagnostic (CAFD) scheme is proposed based on an ensemble learning algorithm called Extra-Trees. To evaluate the performance of the proposed scheme, a realistic WSN scenario composed of humidity and temperature sensor observations is replicated with extreme low-intensity faults. Six commonly occurring types of sensor fault are considered: drift, hard-over/bias, spike, erratic/precision degradation, stuck, and data-loss. The proposed CAFD scheme reveals the ability to accurately detect and diagnose low-intensity sensor faults in a timely manner. Moreover, the efficiency of the Extra-Trees algorithm in terms of diagnostic accuracy, F1-score, ROC-AUC, and training time is demonstrated by comparison with cutting-edge machine learning algorithms: a Support Vector Machine and a Neural Network.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fei Tan ◽  
Xiaoqing Xie

Human motion recognition based on inertial sensor is a new research direction in the field of pattern recognition. It carries out preprocessing, feature selection, and feature selection by placing inertial sensors on the surface of the human body. Finally, it mainly classifies and recognizes the extracted features of human action. There are many kinds of swing movements in table tennis. Accurately identifying these movement modes is of great significance for swing movement analysis. With the development of artificial intelligence technology, human movement recognition has made many breakthroughs in recent years, from machine learning to deep learning, from wearable sensors to visual sensors. However, there is not much work on movement recognition for table tennis, and the methods are still mainly integrated into the traditional field of machine learning. Therefore, this paper uses an acceleration sensor as a motion recording device for a table tennis disc and explores the three-axis acceleration data of four common swing motions. Traditional machine learning algorithms (decision tree, random forest tree, and support vector) are used to classify the swing motion, and a classification algorithm based on the idea of integration is designed. Experimental results show that the ensemble learning algorithm developed in this paper is better than the traditional machine learning algorithm, and the average recognition accuracy is 91%.


2020 ◽  
Vol 187 ◽  
pp. 04001
Author(s):  
Ravipat Lapcharoensuk ◽  
Kitticheat Danupattanin ◽  
Chaowarin Kanjanapornprapa ◽  
Tawin Inkawee

This research aimed to study the combination of NIR spectroscopy and machine learning for monitoring chilli sauce adulterated with papaya smoothie. The chilli sauce was produced by the famous community enterprise of chilli sauce processing in Thailand. The ingredients of the chilli sauce consisted of 45% chilli, 25% sugar, 20% garlic, 5% vinegar, and 5% salt. The chilli sauce sample was mixed with ripened papaya (Khaek Dam variety) smoothie with 9 levels from 10 to 90 %w/w. The NIR spectra of pure chilli sauce, papaya smoothie and 9 adulterated chilli sauce samples were recorded using FT-NIR spectrometer in the wavenumber range of 12500 and 4000 cm-1. Three machine learning algorithms were applied to develop a model for monitoring adulterated chilli sauce, including partial least squares regression (PLS), support vector machine (SVM), and backpropagation neural network (BPNN). All model presented performance of prediction in the validation set with R2al = 0.99 while RMSEP of PLS, SVM and BPNN were 1.71, 2.18 and 3.27% w/w respectively. This finding indicated that NIR spectroscopy coupled with machine learning approaches were shown to be an alternative technique to monitor papaya smoothie adulterated in chilli sauce in the global food industry.


2019 ◽  
Vol 11 (22) ◽  
pp. 2605 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Wang ◽  
Li

Salt-affected soil is a prominent ecological and environmental problem in dry farming areas throughout the world. China has nearly 9.9 million km2 of salt-affected land. The identification, monitoring, and utilization of soil salinization have become important research topics for promoting sustainable progress. In this paper, using field-measured spectral data and soil salinity parameter data, through analysis and transformation of spectral data, five machine learning models, namely, random forest regression (RFR), support vector regression (SVR), gradient-boosted regression tree (GBRT), multilayer perceptron regression (MLPR), and least angle regression (Lars) are compared. The following performance measures of each model were evaluated: the collinear problems, handling data noise, stability, and the accuracy. In terms of these four aspects, the performance of each model on estimating soil salinity is evaluated. The results demonstrate that among the five models, RFR has the best performance in dealing with collinearity, RFR and MLPR have the best performance in dealing with data noise, and the SVR model is the most stable. The Lars model has the highest accuracy, with a determination coefficient (R2) of 0.87, ratio of performance to deviation (RPD) of 2.67, root mean square error (RMSE) of 0.18, and mean absolute percentage error (MAPE) of 0.11. Then, the comprehensive comparison and analysis of the five models are carried out, and it is found that the comprehensive performance of RFR model is the best; hence, this method is most suitable for estimating soil salinity using hyperspectral data. This study can provide a reference for the selection of regression methods in subsequent studies on estimating soil salinity using hyperspectral data.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1557 ◽  
Author(s):  
Ilaria Conforti ◽  
Ilaria Mileti ◽  
Zaccaria Del Prete ◽  
Eduardo Palermo

Ergonomics evaluation through measurements of biomechanical parameters in real time has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for the recognition of postural patterns through wearable sensors and machine-learning algorithms fed with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads, with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such as the range of motion of lower limb and lumbosacral joints, along with the displacement of the trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical model. Statistical differences were found for all kinematic parameters between the correct and the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task, changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using the measurements of kinematic parameters related to the trunk body segment.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Babacar Gaye ◽  
Dezheng Zhang ◽  
Aziguli Wulamu

With the rapid development of the Internet and the rapid development of big data analysis technology, data mining has played a positive role in promoting industry and academia. Classification is an important problem in data mining. This paper explores the background and theory of support vector machines (SVM) in data mining classification algorithms and analyzes and summarizes the research status of various improved methods of SVM. According to the scale and characteristics of the data, different solution spaces are selected, and the solution of the dual problem is transformed into the classification surface of the original space to improve the algorithm speed. Research Process. Incorporating fuzzy membership into multicore learning, it is found that the time complexity of the original problem is determined by the dimension, and the time complexity of the dual problem is determined by the quantity, and the dimension and quantity constitute the scale of the data, so it can be based on the scale of the data Features Choose different solution spaces. The algorithm speed can be improved by transforming the solution of the dual problem into the classification surface of the original space. Conclusion. By improving the calculation rate of traditional machine learning algorithms, it is concluded that the accuracy of the fitting prediction between the predicted data and the actual value is as high as 98%, which can make the traditional machine learning algorithm meet the requirements of the big data era. It can be widely used in the context of big data.


2021 ◽  
Vol 36 (1) ◽  
pp. 721-726
Author(s):  
S. Mahesh ◽  
Dr.G. Ramkumar

Aim: Machine learning algorithm plays a vital role in various biometric applications due to its admirable result in detection, recognition and classification. The main objective of this work is to perform comparative analysis on two different machine learning algorithms to recognize the person from low resolution images with high accuracy. Materials & Methods: AlexNet Convolutional Neural Network (ACNN) and Support Vector Machine (SVM) classifiers are implemented to recognize the face in a low resolution image dataset with 20 samples each. Results: Simulation result shows that ACNN achieves a significant recognition rate with 98% accuracy over SVM (89%). Attained significant accuracy ratio (p=0.002) in SPSS statistical analysis as well. Conclusion: For the considered low resolution images ACNN classifier provides better accuracy than SVM Classifier.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Zhang ◽  
Xia Zhe ◽  
Min Tang ◽  
Jing Zhang ◽  
Jialiang Ren ◽  
...  

Purpose. This study aimed to investigate the value of biparametric magnetic resonance imaging (bp-MRI)-based radiomics signatures for the preoperative prediction of prostate cancer (PCa) grade compared with visual assessments by radiologists based on the Prostate Imaging Reporting and Data System Version 2.1 (PI-RADS V2.1) scores of multiparametric MRI (mp-MRI). Methods. This retrospective study included 142 consecutive patients with histologically confirmed PCa who were undergoing mp-MRI before surgery. MRI images were scored and evaluated by two independent radiologists using PI-RADS V2.1. The radiomics workflow was divided into five steps: (a) image selection and segmentation, (b) feature extraction, (c) feature selection, (d) model establishment, and (e) model evaluation. Three machine learning algorithms (random forest tree (RF), logistic regression, and support vector machine (SVM)) were constructed to differentiate high-grade from low-grade PCa. Receiver operating characteristic (ROC) analysis was used to compare the machine learning-based analysis of bp-MRI radiomics models with PI-RADS V2.1. Results. In all, 8 stable radiomics features out of 804 extracted features based on T2-weighted imaging (T2WI) and ADC sequences were selected. Radiomics signatures successfully categorized high-grade and low-grade PCa cases ( P < 0.05 ) in both the training and test datasets. The radiomics model-based RF method (area under the curve, AUC: 0.982; 0.918), logistic regression (AUC: 0.886; 0.886), and SVM (AUC: 0.943; 0.913) in both the training and test cohorts had better diagnostic performance than PI-RADS V2.1 (AUC: 0.767; 0.813) when predicting PCa grade. Conclusions. The results of this clinical study indicate that machine learning-based analysis of bp-MRI radiomic models may be helpful for distinguishing high-grade and low-grade PCa that outperformed the PI-RADS V2.1 scores based on mp-MRI. The machine learning algorithm RF model was slightly better.


Sign in / Sign up

Export Citation Format

Share Document