scholarly journals Application of Aptamer-Based Biosensor for Rapid Detection of Pathogenic Escherichia coli

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2518 ◽  
Author(s):  
Yu-Wen Zhao ◽  
Hai-Xia Wang ◽  
Guang-Cheng Jia ◽  
Zheng Li

Pathogenic Escherichia coli (E. coli) widely exist in Nature and have always been a serious threat to the human health. Conventional colony forming units counting-based methods are quite time consuming and not fit for rapid detection for E. coli. Therefore, novel strategies for improving detection efficiency and sensitivity are in great demand. Aptamers have been widely used in various sensors due to their extremely high affinity and specificity. Successful applications of aptamers have been found in the rapid detection of pathogenic E. coli. Herein, we present the latest advances in screening of aptamers for E. coli, and review the preparation and application of aptamer-based biosensors in rapid detection of E. coli. Furthermore, the problems and new trends in these aptamer-based biosensors for rapid detection of pathogenic microorganism are also discussed.

2019 ◽  
Vol 9 (2) ◽  
pp. 295 ◽  
Author(s):  
Haixia Wang ◽  
Yuwen Zhao ◽  
Songtao Bie ◽  
Tongchuan Suo ◽  
Guangcheng Jia ◽  
...  

An aptamer-based electrochemical biosensor was successfully developed and applied in the rapid detection of pathogenic Escherichia coli (E. coli) in licorice extract. The thiolated capture probes were firstly immobilized on a gold electrode, and then the biotinylated aptamer probes for E. coli were introduced by hybridization with the capture probes. Due to the stronger interaction between the aptamer and the E. coli, a part of the biotinylated aptamers will dissociate from the capture probes in the presence of E. coli. The residual biotinylated aptamer probes can quantitatively bind with streptavidin-alkaline phosphatase. Subsequently, α-naphthyl phosphate substrate was catalytically hydrolyzed to generate electrochemical response, which could be recorded by a differential pulse voltammetry. The dependence of the peak current on the logarithm of E. coli concentration in the range from 5.0 × 102 colony forming units (CFU)/mL to 5.0 × 107 CFU/mL exhibited a linear trend with a detection limit of 80 CFU/mL. The relative standard deviation of 5 successive scans was 5.3%, 4.5% and 1.1% for 5.0 × 102, 5.0 × 105 and 5.0 × 107 CFU/mL E. coli, respectively. In the detection of the licorice extract samples, the results obtained from the proposed strategy and traditional culture counting method were close to each other, but the time consumption was only ~1/30 compared with the traditional method. These results demonstrate that the designed biosensor can be potentially utilized for rapid microbial examination in traditional Chinese medicine and relevant fields.


1999 ◽  
Vol 62 (7) ◽  
pp. 741-746 ◽  
Author(s):  
FRANÇOIS CAYA ◽  
JOHN M. FAIRBROTHER ◽  
LOUISE LESSARD ◽  
SYLVAIN QUESSY

The purpose of this study was to evaluate the risk for human health associated with pathogenic Escherichia coli isolated from airsacculitis and cellulitis in chickens, by comparing the genotypic and phenotypic profiles of avian E. coli isolates and E. coli strains isolated from sick humans during the same period and in the same geographical area as the avian isolates. A total of 96 isolates and 46 isolates from lesions of cellulitis and airsacculitis, respectively, were obtained. Isolates from the backs of some of the affected and healthy birds and 91 intestinal and extraintestinal isolates from humans with diarrhea, urinary tract infections, or septicemia were examined. The frequency of antimicrobial resistance was in general higher in the avian than in the human isolates. VT1-VT2-Eae and VT2-Eae, pathotypes associated with hemolytic and uremic syndrome and bloody diarrhea in humans, were the most frequently encountered pathotypes in human intestinal isolates but were not recovered from the avian isolates. Aero-Pap-TSH and Aero-TSH were the most frequently encountered pathotypes in avian isolates but were rarely observed in human isolates. No avian isolate was of serogroup O157, whereas many human isolates belonged to this O group. O78 and O2 were the most frequently observed O groups in avian isolates but were rarely found in human isolates. Only two avian isolates demonstrated possible relatedness to human isolates based on pulsed-field gel electrophoresis profiles, but they belonged to different pathotypes. Our results suggest that avian isolates recovered from cellulitis and air sacullitis possess very few of the attributes required to cause diseases in humans. It is also concluded that isolates from cellulitis and airsacculitis do not represent a greater hazard than isolates from the back of healthy birds.


2021 ◽  
pp. e299
Author(s):  
Diana Elizabeth Waturangi ◽  
Jason Petrus ◽  
Rico Kosasih ◽  
Felicia Roseline

Vibrio cholerae and pathogenic Escherichia coli were considered as main causative agent foodborne diseases especially in many developing countries, such as Indonesia. Thereby, rapid detection of these pathogenic bacteria is necessary to treat food-borne related diseases causing by these bacteria. In this case, multiplex PCR allows multiple genes amplification in one reaction thereby enable to perform rapid detection of these pathogenic bacteria. The objective of this study is to optimize uniplex and multiples PCR of V. cholerae and pathogenic E. coli detection and determine the sensitivity and specificity of this assays. We used various virulence genes for each pathogenic bacterium as markers for uniplex and multiplex PCR detection. Based on this research, the optimum results of V. cholerae and pathogenic E. coli were obtained with a primer concentration of 16 µM for ctxA and ompU, 30 µM for ace, and 50 µM for zot, and toxR; 2 µM for elt and 5 µM for stx, respectively. Finally, based on the standardization method by ISO/TS 20836 these assays had 0% false positive, 0% false negative, 100% specificity, and 100% sensitivity; 0% false positive, 4% false negative, 100% specificity, and 96% sensitivity for V. cholerae and pathogenic E. coli respectively. The optimized method was qualified to be used as a molecular detection for V. cholerae as well as EHEC and ETEC detection according to ISO/TS 20836 (2017)  from drinking water samples.


2020 ◽  
Vol 21 (8) ◽  
pp. 772-776
Author(s):  
Xiao-Pei Peng ◽  
Wei Ding ◽  
Jian-Min Ma ◽  
Jie Zhang ◽  
Jian Sun ◽  
...  

Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 467
Author(s):  
Dipak Kathayat ◽  
Dhanashree Lokesh ◽  
Sochina Ranjit ◽  
Gireesh Rajashekara

Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.


Author(s):  
Cheng Liu ◽  
Shuiqin Fang ◽  
Yachen Tian ◽  
Youxue Wu ◽  
Meijiao Wu ◽  
...  

Escherichia coli O157:H7 ( E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 194
Author(s):  
Yung-Chih Wang ◽  
Yao-Hung Tsai ◽  
Ching-Fen Shen ◽  
Ming-Yao He ◽  
Yi-Chen Fu ◽  
...  

Escherichia coli has been known to cause a variety of infectious diseases. The conventional enzyme-linked immunosorbent assay (ELISA) is a well-known method widely used to diagnose a variety of infectious diseases. This method is expensive and requires considerable time and effort to conduct and complete multiple integral steps. We previously proposed the use of paper-based ELISA to rapidly detect the presence of E. coli. This approach has demonstrated utility for point-of-care (POC) urinary tract infection diagnoses. Paper-based ELISA, while advantageous, still requires the execution of several procedural steps. Here, we discuss the design and experimental implementation of a turntable paper-based device to simplify the paper-based ELISA protocols for the detection of E. coli. In this process, antibodies or reagents are preloaded onto zones of a paper-based device and allowed to dry before use. We successfully used this device to detect E. coli with a detection limit of 105 colony-forming units (colony-forming unit [CFU])/mL.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2011 ◽  
Vol 77 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
C. Sekse ◽  
M. Sunde ◽  
B.-A. Lindstedt ◽  
P. Hopp ◽  
T. Bruheim ◽  
...  

ABSTRACTA national survey ofEscherichia coliO26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, andE. coliO26 was detected in 17.9% of the flocks. One hundred forty-twoE. coliO26 isolates were examined for flagellar antigens (H typing) and four virulence genes, includingstxandeae, to identify possible Shiga toxin-producingE. coli(STEC) and enteropathogenicE. coli(EPEC). Most isolates (129 out of 142) were identified asE. coliO26:H11. They possessedeaeand may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between theE. coliO26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all theE. coliO26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing onE. coliO26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.


Author(s):  
Braden Wiser ◽  
S.E. Niebuhr ◽  
James Dickson

A mixed culture of different isolates of Salmonella serovar I 4,[5], 12:i:- was compared to a mixed culture of reference Salmonella serovars as well as non-pathogenic Escherichia coli surrogates.. The two groups of Salmonella were compared for their resistance to commonly used pork carcass interventions, survival in ground pork and thermal resistance in ground pork. There were no observed differences between the response of the two different groups of Salmonella serovars and the non-pathogenic E. coli surrogates within intervention type.  There were no observed differences in the recovery and survival of the two different groups of Salmonella serovars in pork which had been treated with interventions, ground and stored at 5 o C for two weeks. Finally, there were no observed differences in heat resistance between the two different groups of Salmonella serovars in ground pork which had been treated with interventions, ground and stored at 5 o C for two weeks. However, there were observed differences in heat resistance in both groups of Salmonella serovars associated with refrigerated storage. The heat resistance of both groups of Salmonella serovars decreased after refrigerated storage. The results of these experiments demonstrate that there were no observed differences between the responses of Salmonella serovar I 4,[5], 12:i:- when compared to the reference Salmonella serovars to commonly used interventions in the pork industry, and therefore do not present a unique challenge to the pork industry.


Sign in / Sign up

Export Citation Format

Share Document