scholarly journals Self-Calibration Algorithm for a Pressure Sensor with a Real-Time Approach Based on an Artificial Neural Network

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2561 ◽  
Author(s):  
Ahmed Almassri ◽  
Wan Wan Hasan ◽  
Siti Ahmad ◽  
Suhaidi Shafie ◽  
Chikamune Wada ◽  
...  

This paper presents a novel approach to predicting self-calibration in a pressure sensor using a proposed Levenberg Marquardt Back Propagation Artificial Neural Network (LMBP-ANN) model. The self-calibration algorithm should be able to fix major problems in the pressure sensor such as hysteresis, variation in gain and lack of linearity with high accuracy. The traditional calibration process for this kind of sensor is a time-consuming task because it is usually done through manual and repetitive identification. Furthermore, a traditional computational method is inadequate for solving the problem since it is extremely difficult to resolve the mathematical formula among multiple confounding pressure variables. Accordingly, this paper describes a new self-calibration methodology for nonlinear pressure sensors based on an LMBP-ANN model. The proposed method was achieved using a collected dataset from pressure sensors in real time. The load cell will be used as a reference for measuring the applied force. The proposed method was validated by comparing the output pressure of the trained network with the experimental target pressure (reference). This paper also shows that the proposed model exhibited a remarkable performance than traditional methods with a max mean square error of 0.17325 and an R-value over 0.99 for the total response of training, testing and validation. To verify the proposed model’s capability to build a self-calibration algorithm, the model was tested using an untrained input data set. As a result, the proposed LMBP-ANN model for self-calibration purposes is able to successfully predict the desired pressure over time, even the uncertain behaviour of the pressure sensors due to its material creep. This means that the proposed model overcomes the problems of hysteresis, variation in gain and lack of linearity over time. In return, this can be used to enhance the durability of the grasping mechanism, leading to a more robust and secure grasp for paralyzed hands. Furthermore, the exposed analysis approach in this paper can be a useful methodology for the user to evaluate the performance of any measurement system in a real-time environment.

2009 ◽  
Vol 13 (8) ◽  
pp. 1413-1425 ◽  
Author(s):  
N. Q. Hung ◽  
M. S. Babel ◽  
S. Weesakul ◽  
N. K. Tripathi

Abstract. This paper presents a new approach using an Artificial Neural Network technique to improve rainfall forecast performance. A real world case study was set up in Bangkok; 4 years of hourly data from 75 rain gauge stations in the area were used to develop the ANN model. The developed ANN model is being applied for real time rainfall forecasting and flood management in Bangkok, Thailand. Aimed at providing forecasts in a near real time schedule, different network types were tested with different kinds of input information. Preliminary tests showed that a generalized feedforward ANN model using hyperbolic tangent transfer function achieved the best generalization of rainfall. Especially, the use of a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness), the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input data, advanced ANN model to apply with continuous data containing rainy and non-rainy period, allowed model to issue forecast at any moment. Additionally, forecasts by ANN model were compared to the convenient approach namely simple persistent method. Results show that ANN forecasts have superiority over the ones obtained by the persistent model. Rainfall forecasts for Bangkok from 1 to 3 h ahead were highly satisfactory. Sensitivity analysis indicated that the most important input parameter besides rainfall itself is the wet bulb temperature in forecasting rainfall.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Angelo Freni ◽  
Marco Mussetta ◽  
Paola Pirinoli

An efficient artificial neural network (ANN) approach for the modeling of reflectarray elementary components is introduced to improve the numerical efficiency of the different phases of the antenna design and optimization procedure, without loss in accuracy. The comparison between the results of the analysis of the entire reflectarray designed using the simplified ANN model or adopting a full-wave characterization of the unit cell finally proves the effectiveness of the proposed model.


2021 ◽  
pp. 1-22
Author(s):  
Romy Agrawal ◽  
Aashish Malik ◽  
Robello Samuel ◽  
Amit Saxena

Abstract The lithology of the formation is known to affect the drilling operation. Litho-facies help in the quantification of the formation properties, which optimizes the drilling parameters. The proposed work uses the artificial neural network algorithm and an optimizer to develop a working model for predicting the lithology of any formation within the study area in real-time. The proposed model is trained using the formation data comprising 15-dependent variables from the Eagleford region of the United States of America. It builds a method for measuring or forecasting litho-facies in real-time when drilling through a formation. It uses general drilling parameters for better precision, including Rate of Penetration, Rotation per minute, Surface Torque, Differential Pressure, Gamma Ray Correlation, and a d-exponent correlation function. The proposed model compares and assesses various first-order optimization algorithm's efficiency, such as Adaptive Moment Estimation, Adaptive Gradient, Root Mean Square Propagation, and Stochastic Gradient Descent with traditional artificial neural network in quantitative litho-facies detection. The model can predict the complex lithology for vertical/inclined/horizontal wellbores in real-time, making it a novel algorithm in the industry. The developed algorithm illustrates an accuracy of 86 % using Adam optimizer when tested with the existing data and improves as the model is trained with more data.


2021 ◽  
Vol 11 (2) ◽  
pp. 130-136
Author(s):  
Judy X Yang ◽  
◽  
Lily D Li ◽  
Mohammad G. Rasul

The purpose of this research is to explore a suitable Artificial Neural Network (ANN) method applying to warehouse receiving management. A conceptual ANN model is proposed to perform identification and counting of components. The proposed model consists of a standard image library, an ANN system to present objects for identification from the real-time images and to count the number of objects in the image. The authors adopted four basic mechanical design shapes as the attributes of images for shape analysis and pre-defined features; the joint probability from Bayes theorem and image pixel values for object counting is applied in this research. Compared to other ANNs, the proposed conceptual model is straightforward to perform classification and counting. The model is tested by employing a mini image dataset which is industrial enterprise relevant. The initial result shows that the proposed model has achieved an accuracy rate of 80% in classification and a 97% accuracy rate in counting. The development of the model is associated with a few challenges, including exploring algorithms to enhance the accuracy rate for component identification and testing the model in a larger dataset.


Author(s):  
Di Hu ◽  
Gang Chen ◽  
Tao Yang ◽  
Cheng Zhang ◽  
Ziwen Wang ◽  
...  

This paper describes a method to monitor real time parameters and detect early warnings in induced draft fan (ID FAN). An artificial neural network (ANN) model based on cross-relationships among operating parameters was established. In particular, this paper adopted the pre-training of Restricted Boltzmann machines (RBM) and analyzed the training errors of model. A new approach was proposed to monitor parameters by predicted value of model and distribution law of training error, and the reasonable range of each parameter was defined to detect the early warnings in real time. Combining the historical operational data of the No. 1 induced draft fan of No. 3 generating unit in Shajiao C Power Plant in China, this work used MATLAB to verify and analyze the proposed method. The numerical examples shown that the proposed method has better detection performance than the fixed upper and lower limits in the safety instrumented system (SIS). Moreover, this work can expand to other machinery that could be used in manufacturing easily.


Author(s):  
Tae Young Kim ◽  
Jong Man Lee ◽  
Sung Hyup Hong ◽  
Jong Min Choi ◽  
Kwang Ho Lee

Abstract In this study, we developed an artificial neural network-based real-time predictive control and optimization model to compare and analyze the difference in total energy consumption when the condenser water outlet temperature coming out of the cooling tower is fixed and when real-time control of the condenser water outlet temperature through the optimal ANN model is applied. An ANN model was developed through MATLAB’s built-in neural network toolbox functionality to predict total energy consumption. The model accuracy of the ANN was examined by applying Cv(RMSE), a statistical concept that shows the overall accuracy of the predicted values, and as a result, it was found to have a Cv(RMSE) value of approximately 25%. In addition, the predictive control algorithm was able to reduce cooling energy consumption by about 5.6% compared to the conventional control strategy that fix condenser water temperature set-point to constantly 30°C.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document