scholarly journals A Novel Sensorised Insole for Sensing Feet Pressure Distributions

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 747 ◽  
Author(s):  
Ines Sorrentino ◽  
Francisco Javier Andrade Chavez ◽  
Claudia Latella ◽  
Luca Fiorio ◽  
Silvio Traversaro ◽  
...  

Wearable sensors are gaining in popularity because they enable outdoor experimental monitoring. This paper presents a cost-effective sensorised insole based on a mesh of tactile capacitive sensors. Each sensor’s spatial resolution is about 4 taxels/cm 2 in order to have an accurate reconstruction of the contact pressure distribution. As a consequence, the insole provides information such as contact forces, moments, and centre of pressure. To retrieve this information, a calibration technique that fuses measurements from a vacuum chamber and shoes equipped with force/torque sensors is proposed. The validation analysis shows that the best performance achieved a root mean square error (RMSE) of about 7   N for the contact forces and 2   N m for the contact moments when using the force/torque shoe data as ground truth. Thus, the insole may be an alternative to force/torque sensors for certain applications, with a considerably more cost-effective and less invasive hardware.

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6706
Author(s):  
Gabriele Frediani ◽  
Federica Vannetti ◽  
Leonardo Bocchi ◽  
Giovanni Zonfrillo ◽  
Federico Carpi

Reliable, easy-to-use, and cost-effective wearable sensors are desirable for continuous measurements of flexions and torsions of the trunk, in order to assess risks and prevent injuries related to body movements in various contexts. Piezo-capacitive stretch sensors, made of dielectric elastomer membranes coated with compliant electrodes, have recently been described as a wearable, lightweight and low-cost technology to monitor body kinematics. An increase of their capacitance upon stretching can be used to sense angular movements. Here, we report on a wearable wireless system that, using two sensing stripes arranged on shoulder straps, can detect flexions and torsions of the trunk, following a simple and fast calibration with a conventional tri-axial gyroscope on board. The piezo-capacitive sensors avoid the errors that would be introduced by continuous sensing with a gyroscope, due to its typical drift. Relative to stereophotogrammetry (non-wearable standard system for motion capture), pure flexions and pure torsions could be detected by the piezo-capacitive sensors with a root mean square error of ~8° and ~12°, respectively, whilst for flexion and torsion components in compound movements, the error was ~13° and ~15°, respectively.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Mehta ◽  
S Niklitschek ◽  
F Fernandez ◽  
C Villagran ◽  
J Avila ◽  
...  

Abstract Background EKG interpretation is slowly transitioning to a physician-free, Artificial Intelligence (AI)-driven endeavor. Our continued efforts to innovate follow a carefully laid stepwise approach, as follows: 1) Create an AI algorithm that accurately identifies STEMI against non-STEMI using a 12-lead EKG; 2) Challenging said algorithm by including different EKG diagnosis to the previous experiment, and now 3) To further validate the accuracy and reliability of our algorithm while also improving performance in a prehospital and hospital settings. Purpose To provide an accurate, reliable, and cost-effective tool for STEMI detection with the potential to redirect human resources into other clinically relevant tasks and save the need for human resources. Methods Database: EKG records obtained from Latin America Telemedicine Infarct Network (Mexico, Colombia, Argentina, and Brazil) from April 2014 to December 2019. Dataset: A total of 11,567 12-lead EKG records of 10-seconds length with sampling frequency of 500 [Hz], including the following balanced classes: unconfirmed and angiographically confirmed STEMI, branch blocks, non-specific ST-T abnormalities, normal and abnormal (200+ CPT codes, excluding the ones included in other classes). The label of each record was manually checked by cardiologists to ensure precision (Ground truth). Pre-processing: The first and last 250 samples were discarded as they may contain a standardization pulse. An order 5 digital low pass filter with a 35 Hz cut-off was applied. For each record, the mean was subtracted to each individual lead. Classification: The determined classes were STEMI (STEMI in different locations of the myocardium – anterior, inferior and lateral); Not-STEMI (A combination of randomly sampled normal, branch blocks, non-specific ST-T abnormalities and abnormal records – 25% of each subclass). Training & Testing: A 1-D Convolutional Neural Network was trained and tested with a dataset proportion of 90/10; respectively. The last dense layer outputs a probability for each record of being STEMI or Not-STEMI. Additional testing was performed with a subset of the original dataset of angiographically confirmed STEMI. Results See Figure Attached – Preliminary STEMI Dataset Accuracy: 96.4%; Sensitivity: 95.3%; Specificity: 97.4% – Confirmed STEMI Dataset: Accuracy: 97.6%; Sensitivity: 98.1%; Specificity: 97.2%. Conclusions Our results remain consistent with our previous experience. By further increasing the amount and complexity of the data, the performance of the model improves. Future implementations of this technology in clinical settings look promising, not only in performing swift screening and diagnostic steps but also partaking in complex STEMI management triage. Funding Acknowledgement Type of funding source: None


2020 ◽  
Vol 12 (13) ◽  
pp. 2137 ◽  
Author(s):  
Ilinca-Valentina Stoica ◽  
Marina Vîrghileanu ◽  
Daniela Zamfir ◽  
Bogdan-Andrei Mihai ◽  
Ionuț Săvulescu

Monitoring uncontained built-up area expansion remains a complex challenge for the development and implementation of a sustainable planning system. In this regard, proper planning requires accurate monitoring tools and up-to-date information on rapid territorial transformations. The purpose of the study was to assess built-up area expansion, comparing two freely available and widely used datasets, respectively, Corine Land Cover and Landsat, to each other, as well as the ground truth, with the goal of identifying the most cost-effective and reliable tool. The analysis was based on the largest post-socialist city in the European Union, the capital of Romania, Bucharest, and its neighboring Ilfov County, from 1990 to 2018. This study generally represents a new approach to measuring the process of urban expansion, offering insights about the strengths and limitations of the two datasets through a multi-level territorial perspective. The results point out discrepancies between the datasets, both at the macro-scale level and at the administrative unit’s level. On the macro-scale level, despite the noticeable differences, the two datasets revealed the spatiotemporal magnitude of the expansion of the built-up area and can be a useful tool for supporting the decision-making process. On the smaller territorial scale, detailed comparative analyses through five case-studies were conducted, indicating that, if used alone, limitations on the information that can be derived from the datasets would lead to inaccuracies, thus significantly limiting their potential to be used in the development of enforceable regulation in urban planning.


2016 ◽  
Vol 3 (10) ◽  
pp. 160203 ◽  
Author(s):  
Olga Panagiotopoulou ◽  
Todd C. Pataky ◽  
Madeleine Day ◽  
Michael C. Hensman ◽  
Sean Hensman ◽  
...  

Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3476 ◽  
Author(s):  
Jumana Abu-Khalaf ◽  
Razan Saraireh ◽  
Saleh Eisa ◽  
Ala’aldeen Al-Halhouli

This paper introduces a cost-effective method for the fabrication of stretchable circuits on polydimethylsiloxane (PDMS) using inkjet printing of silver nanoparticle ink. The fabrication method, presented here, allows for the development of fully stretchable and wearable sensors. Inkjet-printed sinusoidal and horseshoe patterns are experimentally characterized in terms of the effect of their geometry on stretchability, while maintaining adequate electrical conductivity. The optimal fabricated circuit, with a horseshoe pattern at an angle of 45°, is capable of undergoing an axial stretch up to a strain of 25% with a resistance under 800 Ω. The conductivity of the circuit is fully reversible once it is returned to its pre-stretching state. The circuit could also undergo up to 3000 stretching cycles without exhibiting a significant change in its conductivity. In addition, the successful development of a novel inkjet-printed fully stretchable and wearable version of the conventional pulse oximeter is demonstrated. Finally, the resulting sensor is evaluated in comparison to its commercially available counterpart.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2972 ◽  
Author(s):  
Jorge Rodríguez ◽  
Ivana Semanjski ◽  
Sidharta Gautama ◽  
Nico Van de Weghe ◽  
Daniel Ochoa

Understanding tourism related behavior and traveling patterns is an essential element of transportation system planning and tourism management at tourism destinations. Traditionally, tourism market segmentation is conducted to recognize tourist’s profiles for which personalized services can be provided. Today, the availability of wearable sensors, such as smartphones, holds the potential to tackle data collection problems of paper-based surveys and deliver relevant mobility data in a timely and cost-effective way. In this paper, we develop and implement a hierarchical clustering approach for smartphone geo-localized data to detect meaningful tourism related market segments. For these segments, we provide detailed insights into their characteristics and related mobility behavior. The applicability of the proposed approach is demonstrated on a use case in the Province of Zeeland in the Netherlands. We collected data from 1505 users during five months using the Zeeland app. The proposed approach resulted in two major clusters and four sub-clusters which we were able to interpret based on their spatio-temporal patterns and the recurrence of their visiting patterns to the region.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Abhishek Singharoy ◽  
Ivan Teo ◽  
Ryan McGreevy ◽  
John E Stone ◽  
Jianhua Zhao ◽  
...  

Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.


Author(s):  
Hao Zhang ◽  
Liangxiao Jiang ◽  
Wenqiang Xu

Crowdsourcing services provide a fast, efficient, and cost-effective means of obtaining large labeled data for supervised learning. Ground truth inference, also called label integration, designs proper aggregation strategies to infer the unknown true label of each instance from the multiple noisy label set provided by ordinary crowd workers. However, to the best of our knowledge, nearly all existing label integration methods focus solely on the multiple noisy label set itself of the individual instance while totally ignoring the intercorrelation among multiple noisy label sets of different instances. To solve this problem, a multiple noisy label distribution propagation (MNLDP) method is proposed in this study. MNLDP first transforms the multiple noisy label set of each instance into its multiple noisy label distribution and then propagates its multiple noisy label distribution to its nearest neighbors. Consequently, each instance absorbs a fraction of the multiple noisy label distributions from its nearest neighbors and yet simultaneously maintains a fraction of its own original multiple noisy label distribution. Promising experimental results on simulated and real-world datasets validate the effectiveness of our proposed method.


2022 ◽  
Vol 92 (1) ◽  
pp. 32
Author(s):  
О.М. Скрекель ◽  
Н.Н. Бахарев ◽  
В.И. Варфоломеев ◽  
В.К. Гусев ◽  
М.В. Ильясова ◽  
...  

The paper discusses the results of the calibration of two corona neutron counters used to measure the total neutron yield from the plasma of the Globus-M2 tokamak. The calibration was carried out in the experimental hall of the Globus-M2 facility using an AmBe source. During the calibration, the source moved uniformly around the central solenoid in the equatorial plane of the vacuum chamber, and one of the detectors was gradually moved away from the tokamak along a line with a constant toroidal angle. The values of the calibration coefficient obtained depending on the distance of the detector from the tokamak axis are presented. The calibration technique made it possible to separate in the detector signal the contributions from the direct neutron flux emitted by the plasma and from the flux of neutrons scattered on the elements of the experimental hall.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 31 ◽  
Author(s):  
Dario Modenini ◽  
Anton Bahu ◽  
Giacomo Curzi ◽  
Andrea Togni

To enable a reliable verification of attitude determination and control systems for nanosatellites, the environment of low Earth orbits with almost disturbance-free rotational dynamics must be simulated. This work describes the design solutions adopted for developing a dynamic nanosatellite attitude simulator testbed at the University of Bologna. The facility integrates several subsystems, including: (i) an air-bearing three degree of freedom platform, with automatic balancing system, (ii) a Helmholtz cage for geomagnetic field simulation, (iii) a Sun simulator, and (iv) a metrology vision system for ground-truth attitude generation. Apart from the commercial off-the-shelf Helmholtz cage, the other subsystems required substantial development efforts. The main purpose of this manuscript is to offer some cost-effective solutions for their in-house development, and to show through experimental verification that adequate performances can be achieved. The proposed approach may thus be preferred to the procurement of turn-key solutions, when required by budget constraints. The main outcome of the commissioning phase of the facility are: a residual disturbance torque affecting the air bearing platform of less than 5 × 10−5 Nm, an attitude determination rms accuracy of the vision system of 10 arcmin, and divergence of the Sun simulator light beam of less than 0.5° in a 35 cm diameter area.


Sign in / Sign up

Export Citation Format

Share Document