scholarly journals Prospects of Autonomous Volcanic Monitoring Stations: Experimental Investigation on Thermoelectric Generation from Fumaroles

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3547 ◽  
Author(s):  
Leyre Catalan ◽  
Miguel Araiz ◽  
Patricia Aranguren ◽  
German D. Padilla ◽  
Pedro A. Hernandez ◽  
...  

Fumaroles represent evidence of volcanic activity, emitting steam and volcanic gases at temperatures between 70 and 100 ∘ C . Due to the well-known advantages of thermoelectricity, such as reliability, reduced maintenance and scalability, the present paper studies the possibilities of thermoelectric generators, devices based on solid-state physics, to directly convert fumaroles heat into electricity due to the Seebeck effect. For this purpose, a thermoelectric generator composed of two bismuth-telluride thermoelectric modules and heat pipes as heat exchangers was installed, for the first time, at Teide volcano (Canary Islands, Spain), where fumaroles arise in the surface at 82 ∘ C . The installed thermoelectric generator has demonstrated the feasibility of the proposed solution, leading to a compact generator with no moving parts that produces a net generation between 0.32 and 0.33 W per module given a temperature difference between the heat reservoirs encompassed in the 69–86 ∘ C range. These results become interesting due to the possibilities of supplying power to the volcanic monitoring stations that measure the precursors of volcanic eruptions, making them completely autonomous. Nonetheless, in order to achieve this objective, corrosion prevention measures must be taken because the hydrogen sulfide contained in the fumaroles reacts with steam, forming sulfuric acid.

Author(s):  
Marilyn A. Ebiringa ◽  
John Paul Adimonyemma ◽  
Chika Maduabuchi

A thermoelectric generator (TEG) converts thermal energy to electricity using thermoelectric effects. The amount of electrical energy produced is dependent on the thermoelectric material properties. Researchers have applied nanomaterials to TEG systems to further improve the device’s efficiency. Furthermore, the geometry of the thermoelectric legs has been varied from rectangular to trapezoidal and even X-cross sections to improve TEG’s performance further. However, up to date, a nanomaterial TEG that uses tapered thermoelectric legs has not been developed before. The most efficient nanomaterial TEGs still make use of the conventional rectangular leg geometry. Hence, for the first time since the conception of nanostructured thermoelectrics, we introduce a trapezoidal shape configuration in the device design. The leg geometries were simulated using ANSYS software and the results were post-processed in the MATLAB environment. The results show that the power density of the nanoparticle X-leg TEG was 10 times greater than that of the traditional bulk material semiconductor X-leg TEG. In addition, the optimum leg geometry configuration in a nanomaterial-based TEG is dependent on the operating solar radiation intensity.


Parasitology ◽  
2018 ◽  
Vol 145 (13) ◽  
pp. 1665-1699 ◽  
Author(s):  
S. Mas-Coma ◽  
M. D. Bargues ◽  
M. A. Valero

AbstractHuman fascioliasis infection sources are analysed for the first time in front of the new worldwide scenario of this disease. These infection sources include foods, water and combinations of both. Ingestion of freshwater wild plants is the main source, with watercress and secondarily other vegetables involved. The problem of vegetables sold in uncontrolled urban markets is discussed. Distinction between infection sources by freshwater cultivated plants, terrestrial wild plants, and terrestrial cultivated plants is made. The risks by traditional local dishes made from sylvatic plants and raw liver ingestion are considered. Drinking of contaminated water, beverages and juices, ingestion of dishes and soups and washing of vegetables, fruits, tubercles and kitchen utensils with contaminated water are increasingly involved. Three methods to assess infection sources are noted: detection of metacercariae attached to plants or floating in freshwater, anamnesis in individual patients, and questionnaire surveys in endemic areas. The infectivity of metacercariae is reviewed both under field conditions and experimentally under the effects of physicochemical agents. Individual and general preventive measures appear to be more complicated than those considered in the past. The high diversity of infection sources and their heterogeneity in different countries underlie the large epidemiological heterogeneity of human fascioliasis throughout.


2019 ◽  
Vol 12 (10) ◽  
pp. 5503-5517 ◽  
Author(s):  
Pascal Hedelt ◽  
Dmitry S. Efremenko ◽  
Diego G. Loyola ◽  
Robert Spurr ◽  
Lieven Clarisse

Abstract. The accurate determination of the location, height, and loading of sulfur dioxide (SO2) plumes emitted by volcanic eruptions is essential for aviation safety. The SO2 layer height is also one of the most critical parameters with respect to determining the impact on the climate. Retrievals of SO2 plume height have been carried out using satellite UV backscatter measurements, but, until now, such algorithms are very time-consuming. We have developed an extremely fast yet accurate SO2 layer height retrieval using the Full-Physics Inverse Learning Machine (FP_ILM) algorithm. This is the first time the algorithm has been applied to measurements from the TROPOMI instrument onboard the Sentinel-5 Precursor platform. In this paper, we demonstrate the ability of the FP_ILM algorithm to retrieve SO2 plume layer heights in near-real-time applications with an accuracy of better than 2 km for SO2 total columns larger than 20 DU. We present SO2 layer height results for the volcanic eruptions of Sinabung in February 2018, Sierra Negra in June 2018, and Raikoke in June 2019, observed by TROPOMI.


Author(s):  
Anselm Smolka

Loss statistics for natural disasters demonstrate, also after correction for inflation, a dramatic increase of the loss burden since 1950. This increase is driven by a concentration of population and values in urban areas, the development of highly exposed coastal and valley regions, the complexity of modern societies and technologies and probably, also by the beginning consequences of global warming. This process will continue unless remedial action will be taken. Managing the risk from natural disasters starts with identification of the hazards. The next step is the evaluation of the risk, where risk is a function of hazard, exposed values or human lives and the vulnerability of the exposed objects. Probabilistic computer models have been developed for the proper assessment of risks since the late 1980s. The final steps are controlling and financing future losses. Natural disaster insurance plays a key role in this context, but also private parties and governments have to share a part of the risk. A main responsibility of governments is to formulate regulations for building construction and land use. The insurance sector and the state have to act together in order to create incentives for building and business owners to take loss prevention measures. A further challenge for the insurance sector is to transfer a portion of the risk to the capital markets, and to serve better the needs of the poor. Catastrophe bonds and microinsurance are the answer to such challenges. The mechanisms described above have been developed to cope with well-known disasters like earthquakes, windstorms and floods. They can be applied, in principle, also to less well investigated and less frequent extreme disasters: submarine slides, great volcanic eruptions, meteorite impacts and tsunamis which may arise from all these hazards. But there is an urgent need to improve the state of knowledge on these more exotic hazards in order to reduce the high uncertainty in actual risk evaluation to an acceptable level. Due to the rarity of such extreme events, specific risk prevention measures are hardly justified with exception of attempts to divert earth-orbit crossing meteorites from their dangerous path. For the industry it is particularly important to achieve full transparency as regards covered and non-covered risks and to define in a systematic manner the limits of insurability for super-disasters.


2021 ◽  
Author(s):  
Jörg Franke ◽  
Michael Neil Evans ◽  
Andrew Schurer ◽  
Gabriele Clarissa Hegerl

Abstract. The detection and attribution (D&A) of paleoclimatic change to external radiative forcing relies on regression of statistical reconstructions on simulations. However, this procedure may be biased by assumptions of stationarity and univariate linear response of the underlying paleoclimatic observations. Here we perform a D&A study via regression of tree ring width (TRW) observations on TRW simulations which are forward modeled from climate simulations. Temperature and moisture-sensitive TRW simulations show distinct patterns in time and space. Temperature-sensitive TRW observations and simulations are significantly correlated for northern hemisphere averages, and their variation is attributed most closely to volcanically forced simulations. In decadally smoothed temporal fingerprints, we find the observed responses to be significantly larger and/or more persistent than the simulated responses. The pattern of simulated TRW of moisture-limited trees is consistent with the observed anomalies in the two years following major volcanic eruptions. We can for the first time attribute this spatiotemporal fingerprint in moisture limited tree-ring records to volcanic forcing. These results suggest that use of nonlinear and multivariate proxy system models in paleoclimatic detection and attribution studies may permit more realistic, spatially resolved and multivariate fingerprint detection studies, and evaluation of the climate sensitivity to external radiative forcing, than has previously been possible.


Author(s):  
Kjell Karlsrud ◽  
Lloyd Tunbridge ◽  
Nguyen Quoc Khanh ◽  
Nguyen Quoc Dinh

Abstract. A previous study of the Ca Mau province in Vietnam (Karlsrud et al., 2017a) suggested that ongoing groundwater pumping, which by 2012 had caused a drawdown of the water level in aquifers of up to 20 m, caused subsidence of the order 2–4 cm yr−1, and could have reached over 40 cm already. Earlier InSAR studies also suggested ongoing subsidence rates of that order. If the groundwater pumping continues, the total subsidence could reach well over 1 m within the next few decades. The predicted climate driven sea level rise, to be of the order of 60 cm by 2100, will further add to the severe effect of the subsidence. As most of the Ca Mau province lies only 0.5 to 1.5 m a.s.l. (above sea level), the consequences would rapidly become very serious for the livelihood of people in the region. Increased saltwater intrusion into canals and tributaries in the province, and beginning salination of some of the aquifers from which groundwater is pumped, is already observed. In 2017, for the first time, a physical system for subsidence monitoring was installed at three selected locations in the Ca Mau province. At each location a deep benchmark to a depth of 100 m was installed, each with 3 piezometers at depths ranging from 15 to 60 m. An InSAR corner reflector was also installed at each site. The paper presents data collected from these new monitoring stations up until the middle 2019. When including estimated subsidence stemming from the soil levels deeper than 100 m, the total present rate of subsidence at the three new monitoring stations range from 17 to 44 mm yr−1. New and previous data show an almost linear decrease in water level within the aquifers from which groundwater is pumped. The data show some seasonal variations in subsidence rates, which is also reflected in variations in pore pressures in the sediments. Such variations are probably related to seasonal variations in levels of groundwater pumping. It is feared that many of the other provinces south of Ho Chi Minh city, face similar subsidence problems. The monitoring program should be extended to verify that. Measures to reduce groundwater and subsidence are urgently needed.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 161-181
Author(s):  
Eveling Espinoza ◽  
José Armando Saballos Peréz ◽  
Martha Navarro Collado ◽  
Virginia Tenorio Bellanger ◽  
Teresita Olivares Loaisiga ◽  
...  

The Instituto Nicaragüense de Estudios Territoriales (INETER) is the institution responsible for volcano monitoring in Nicaragua. The Volcanology Division of the General Directorate of Geology and Geophysics currently monitors six active volcanoes by means of seismology, gas measurements, optical webcams, and visual and satellite observations. The volcano monitoring network that INETER maintains is in continuous expansion and modernization. Similarly, the number of technical and scientific personnel has been growing in the last few years. 2015 was the busiest year of the last two decades: Momotombo volcano erupted for the first time in 110 years, a lava lake was emplaced at the bottom of Masaya volcano’s Santiago crater, and Telica volcano experienced a phreatic phase from May to November. Although we have increased our monitoring capabilities, we still have many challenges for the near future that we expect to resolve with support from the national and international geoscientific community. El Instituto Nicaragüense de Estudios Territoriales (INETER) es la institución responsable de la vigilancia volcánica en Nicaragua. Su División de Vulcanología actualmente vigila seis volcanes activos por medio de sismicidad, emisiones de gases, cámaras ópticas, observaciones visuales y teledetección satelital. La red de monitoreo de volcanes que mantiene INETER está en continua expansión y modernización. Del mismo modo, el número de personal técnico y científico ha estado creciendo en los últimos años. El año 2015 fue el año más ocupado que tuvimos en las últimas dos décadas, debido a que el volcán Momotombo entró en erupción por primera vez en los últimos 110 años, se emplazó un lago de lava en el fondo del cráter Santiago (volcán Masaya), y el volcán Telica experimentó una fase freática de mayo a noviembre. A pesar del progreso realizado, todavía tenemos muchos desafíos para el futuro cercano que esperamos lograr con los recursos nacionales y de la comunidad geocientífica internacional.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5815
Author(s):  
Miguel Araiz ◽  
Álvaro Casi ◽  
Leyre Catalán ◽  
Patricia Aranguren ◽  
David Astrain

One of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9W in the thermoelectric generator with the finned dissipater; and 10.6W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed.


2021 ◽  
Vol 2 (1 (339)) ◽  
pp. 101-111
Author(s):  
Iryna Trubavina ◽  
◽  
Kateryna Kalina ◽  

The article is devoted to a topical issue – prevention of alcoholism among children, families and youth. The authors reveal on the basis of a theoretical analysis of the regulatory framework of Ukraine and international documents on the problem of alcoholism prevention measures that have been taken and implemented in the daily life of Ukrainians. In their article, the authors allocate new resources for such work among social prevention with children, youth, families. The authors propose a 3-level system of social prevention of alcoholism, which shows the purpose and group of effects for each level. This is primary, secondary, tertiary social prevention. Primary social prevention requires information work among children, youth and their families. Secondary social prevention is dedicated to risk groups for alcoholism. Tertiary social prevention is aimed at working with those who already have this negative habit and their family members. For the first time in the theory of social work scientific approaches to social prevention of alcoholism among children, young people and their families are allocated: environmental, social-educational, system, resource. This allowed the authors to identify new resources for social prevention of alcoholism among children, young people and their families in the form of: work with micro- and macro-environment, preventive education of schoolchildren and teaching their life skills in secondary education, systematic social work with families of alcoholics, family strengthening techniques, motivation to deprive this negative habit. Prospects for further research are: development of a curriculum for life skills of students in grades 1-11, preventive education for alcoholism, the state program for the prevention of alcoholism, parental lectures on alcoholism.


2018 ◽  
Vol 67 ◽  
pp. 02057
Author(s):  
Imansyah Ibnu Hakim ◽  
Nandy Putra ◽  
Mohammad Usman

Waste heat recovery is one way to reduce the use of fossil fuels, one of them is by using thermoelectric generator to convert waste heat into Thermoelectric Generator (TEGs) is a module that can convert heat into electrical power directly, using Seebeck effect and Peltier effect as its working principle, so it can increase efficiency of energy consumption by utilizing waste heat from an instrument that generate waste heat. The focus of this research is to find the output voltage of TEG by utilizing the temperature difference on the cold side and the heat side of the TEGs. The heat side of the module will be given heat from the heater as a simulation of the heat from hot water, and on the cold side heat pipes will be used to remove the heat on the cold side of TEGs. The result, output voltage that generated by using 4 module TEGs that arranged to Thermal Series - Series Circuit and using 2 heat pipes is 2.1-volt, and then it is possible to use for phone charger.


Sign in / Sign up

Export Citation Format

Share Document