scholarly journals Design of Piezoelectric Ultrasonic Transducer Based on Doped PDMS

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3123
Author(s):  
Ran Yang ◽  
Wenyi Liu ◽  
Wanjia Gao ◽  
Dingwei Kang

The performance of the ultrasonic transducer will directly affect the accuracy of ultrasonic experimental measurement. Therefore, in order to meet the requirements of a wide band, a kind of annular 2-2-2 piezoelectric composite is proposed based on doped PDMS. In this paper, the transducer structure consisted of PZT-5A piezoelectric ceramics and PDMS doped with 3 wt.% Al2O3:SiO2 (1:6) powder, which constituted the piezoelectric composite. MATLAB and COMSOL software were used for simulation. Meanwhile, the electrode materials were selected. Then, the performance of the designed annular 2-2-2 ultrasonic transducer was tested. The simulation results show that when the polymer phase material of the piezoelectric ultrasonic transducer is doped PDMS, the piezoelectric phase and the ceramic substrate account for 70% of the total volume, the polymer phase accounts for 30% of the total volume, and the maximum frequency band width can reach 90 kHz. The experimental results show that the maximum bandwidth of −3 dB can reach 104 kHz when the frequency is 160 kHz. The results of the electrode test show that the use of Cu/Ti electrode improves the electrical conductivity of the single electrode. In this paper, the annular 2-2-2 transducer designed in the case of small volume had the characteristics of a wide frequency band, which was conducive to the miniaturization and integration of the transducer. Therefore, we believe that the annular 2-2-2 piezoelectric composite has broad application prospects.

2014 ◽  
Vol 687-691 ◽  
pp. 4024-4028
Author(s):  
Si Hao Wang ◽  
Yong Li ◽  
Shen Ke Zhang

A reconfigurable wideband Log-Periodic Dipole Array (LPDA) is here in introduced. Built utilizing low cost it can cover frequencies from 0.2GHz to 2GHz, through the discrete adjustment of its elements. The gain of antenna in a given frequency band of operation can also be changed by the reconfiguration of its elements. The design, construction and testing processes are discussed and a performance analysis is made based on computer simulations. In this paper simulation software HFSS is used to get the optimization design of LPDA, and the simulation results are agree with the experimental dates appropriately.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2590
Author(s):  
Alexandre Robichaud ◽  
Dominic Deslandes ◽  
Paul-Vahé Cicek ◽  
Frederic Nabki

This paper proposes a system in package (SiP) for ultrasonic ranging composed of a 4 × 8 matrix of piezoelectric micromachined ultrasonic transducers (PMUT) and an interface integrated circuit (IC). The PMUT matrix is fabricated using the PiezoMUMPS process and the IC is implemented in the AMS 0.35 µm technology. Simulation results for the PMUT are compared to the measurement results, and an equivalent circuit has been derived to allow a better approximation of the load of the PMUT on the IC. The control circuit is composed of a high-voltage pulser to drive the PMUT for transmission and of a transimpedance amplifier to amplify the received echo. The working frequency of the system is 1.5 MHz.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Pingyan Shi ◽  
Xiaohui Liu ◽  
Xiaofeng Tao ◽  
Jianchao Ji

A hybrid multiuser detection (MUD) using code mapping and a wrong code recognition based on relevance vector machine (RVM) for direct sequence ultra wide band (DS-UWB) system is developed to cope with the multiple access interference (MAI) and the computational efficiency. A new MAI suppression mechanism is studied in the following steps: firstly, code mapping, an optimal decision function, is constructed and the output candidate code of the matched filter is mapped to a feature space by the function. In the feature space, simulation results show that the error codes caused by MAI and the single user mapped codes can be classified by a threshold which is related to SNR of the receiver. Then, on the base of code mapping, use RVM to distinguish the wrong codes from the right ones and finally correct them. Compared with the traditional MUD approaches, the proposed method can considerably improve the bit error ratio (BER) performance due to its special MAI suppression mechanism. Simulation results also show that the proposed method can approximately achieve the BER performance of optimal multiuser detection (OMD) and the computational complexity approximately equals the matched filter. Moreover, the proposed method is less sensitive to the number of users.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2347 ◽  
Author(s):  
Shaohua Hao ◽  
Hongwei Wang ◽  
Chao Zhong ◽  
Likun Wang ◽  
Hao Zhang

A wide-band cylindrical transducer was developed by using the wide band of the composite material and the matched matching layer for multimode coupling. Firstly, the structure size of the transducer’s sensitive component was designed by using ANSYS simulation software. Secondly, the piezoelectric composite ring-shaped sensitive component was fabricated by the piezoelectric composite curved-surface forming process, and the matching layer was coated on the periphery of the ring-shaped piezoelectric composite material. Finally, it was encapsulated and the electrodes were drawn out to make a high-frequency broadband horizontal omnidirectional water acoustic transducer prototype. After testing, the working frequency range of the transducer was 230–380 kHz, and the maximum transmission voltage response was 168 dB in the water.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1156
Author(s):  
Wenjie Qi ◽  
Bowen Liu ◽  
Tian Liang ◽  
Jian Chen ◽  
Deyong Chen ◽  
...  

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.


2013 ◽  
Vol 579-580 ◽  
pp. 804-807
Author(s):  
Zhong Yao Wu ◽  
Tian Feng Zhao ◽  
Jian Bo Cao ◽  
Shi Ju E ◽  
Chun Xiao Chen

Dielectric elastomer is a kind of electroactive polymer material with optimal performance. As actuator material, dielectric elastomer has shown a good prospect. Based on studying the principle of electroactive polymer, a new type of cylindrical actuator was designed. Its 3-D figure and 2-D dimension drawing was finished by UG software. The animation simulation of the actuator was studied. The simulation results verified the feasibility of design scheme. Electroactive polymer will have broad application prospects in the field of actuator.


2019 ◽  
Vol 11 (9) ◽  
pp. 948-966 ◽  
Author(s):  
Tale Saeidi ◽  
Idris Ismail ◽  
Wong Peng Wen ◽  
Adam R. H. Alhawari

AbstractThis paper presents the design of an elliptical shape ultra-wide band antenna for imaging of wood. The antenna is constructed comprising an elliptical shape of patch loaded by a stub to resonate at lower bands, strip loading at the back, and chamfered ground. Despite having miniaturized dimensions of 20 mm × 20 mm, the proposed antenna shows better results compared to recent studies. The simulation results depict a good ultra-wide bandwidth from 2.68 to 16 GHz, and 18.2–20 GHz. Besides, the proposed antenna has two low-frequency bands at 0.89–0.92 and 1.52–1.62 GHz, maximum gain of 5.48 dB, and maximum directivity of 6.9 dBi. The measurement outcomes are performed in air, plywood, and high-density wood and show a good agreement with the simulated results done using electromagnetic simulator CST. In addition to that, the measurement results of S-parameters, transmitted and received signals show a good agreement with the simulated results. Besides, the measured results illustrate a good isolation and uniform illumination among arrays as well as the received signals' shapes do not change in different environments, but only the amplitude. Hence, the proposed antenna seems to be adequate for microwave imaging of wood.


2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


2020 ◽  
Vol 862 ◽  
pp. 22-27
Author(s):  
Laxman S. Godse ◽  
M.J. Bhalerao ◽  
Faiz M. Khwaja ◽  
Neelima R. Kulkarni ◽  
Parshuram B. Karandikar

Ultracapacitor is a new electrical energy storage device which has high power density than conventional battery and capacitor. It offers high capacitance in small volume compared to conventional capacitors. While selecting ultracapacitors for various applications, parameters like specific resistance, internal capacitance, pulse current, energy density are required to be considered. Amongst these factors, specific capacitance of ultracapacitor depends mainly on parameters of electrode. The present paper is focused on modeling of ultracapacitor based on variations in some of the electrode parameters. The objective of present research work is to apply a statistical method to obtain an electrode material based model for prismatic type ultracapacitor. To have deep insight about the performance through modeling approach, the number of trials have been taken by doing the variations in the electrode materials of ultracapacitor and the quantity of the electrode material loaded on the current collector. The effect of both these variations is studied over the specific capacitance, which is taken as output parameter of model. Developed model is validated at selected values of input parameters.


Sign in / Sign up

Export Citation Format

Share Document