scholarly journals SFCW Radar with an Integrated Static Target Echo Cancellation System

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5829
Author(s):  
Danijel Šipoš ◽  
Dušan Gleich

Continuous Wave (CW) radars systems, especially air-coupled Ground-Penetrating Radar (GPR) or Through-Wall Imaging Radar (TWIR) systems, echo signals reflected from a stationary target with high energy, which may cause receiver saturation. Another effect caused by reflection of stationary targets is noticeable as background within a radargram. Nowadays, radar systems use automatic gain control to prevent receiver saturation. This paper proposes a method to remove stationary targets automatically from the received signal. The method was designed for a radar system with a moving platform, with an assumption that the distance between the surface and target is constant. The design is proposed of an SFCW radar with an integrated system for real-time multiple static target Echo Cancellation (EC). The proposed EC system removes the static target using active Integrated Circuit (IC) components, which generate the corresponding EC signal for each frequency step of the SFCW radar and sum it with the received echo signal. This has the main advantage of removing even multiple echoes at any distance, and excludes the need for a high-dynamic-range receiver. Additionally, the proposed system has minimal impact on the radar size and power consumption. Besides static target removal, the antenna coupling can be removed if the signal appears to be constant. The operating frequency was selected between 500 MHz and 2.5 GHz, due to the limitation of the used electronic components. The experimental results show that the simulated target’s echo using a cable with a known length could be suppressed to up to 38 dB. Experimental results using a moving radar platform and the real environment scenario with static and dynamic targets, show that the proposed EC system could achieve up to 20 dB attenuation of the static target. The system does not affect any other target of interest, which can even move at any distance during the measurement. Therefore, this could be a promising method for further compact implementation into SFCW radars, or any other radar type that generates CW single frequencies.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 977.1-977
Author(s):  
A. Potapova ◽  
O. Egorova ◽  
O. Alekseeva ◽  
A. Volkov ◽  
S. Radenska-Lopovok

Background:Ultrasound (US) is a non-invasive and safe imaging method that allows in vivo differentiation of the morphological structures of subcutaneous fat (SCF) tissue in in normal and pathology.Objectives:Reveal features of ultrasound changes in SCF in panniculitis (Pn).Methods:57 patients (f – 45, m - 12) aged 18 - 67 years with an initial diagnosis of erythema nodosum and a disease duration of 3.6 ± 1.4 years were examined. In addition to the general clinical examination, a computed tomography of the chest organs and a pathomorphological examination of a skin biopsy from the site of the node were performed. Ultrasound was performed on a MyLabTwice apparatus (ESAOTE, Italy) using a multi-frequency linear transducer (10-18 MHz) with the PD technique, the parameters of which were adapted for recording low-speed flows (PRF 300-600 Hz, low filter, dynamic range - 20-40 dB), the presence of vascularization was assessed not only in the affected area, but also on the contralateral side using high-energy Doppler.Results:33 patients were diagnosed with septal Pn (SPn), 24 - lobular Pn (LPn). In all cases, the diagnosis was verified by histological examination. Ultrasound made it possible to assess the thickness, echoicity and vascularization of the SCF. In 35 patients, significant thickening of the SCF was revealed (as compared to the contralateral side), of which in 14 cases with SPn, in 21 - with LPn. Significant diffuse thickening of the SCF with the contralateral side was observed in 18 patients, incl. in 12 (66%) patients with LPn. Limited thickening was more typical for SPn (73%). A significant increase in the echoicity of the SCF was noted in all forms of Pn. A “lobular” echo pattern with an anechogenic environment was observed in 25 patients, of which 18 (72%) had LPn. An increase in vascularization compared to the contralateral side was recorded in 30 cases (SPn-17, LPn-13).Conclusion:The obtained preliminary results indicate the important role of ultrasound in assessing the depth and prevalence of the inflammatory process at Pn. To clarify the diagnostic value of this method, further studies are needed on a larger sample of patients.Disclosure of Interests:None declared


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lars Liebermeister ◽  
Simon Nellen ◽  
Robert B. Kohlhaas ◽  
Sebastian Lauck ◽  
Milan Deumer ◽  
...  

AbstractBroadband terahertz spectroscopy enables many promising applications in science and industry alike. However, the complexity of existing terahertz systems has as yet prevented the breakthrough of this technology. In particular, established terahertz time-domain spectroscopy (TDS) schemes rely on complex femtosecond lasers and optical delay lines. Here, we present a method for optoelectronic, frequency-modulated continuous-wave (FMCW) terahertz sensing, which is a powerful tool for broadband spectroscopy and industrial non-destructive testing. In our method, a frequency-swept optical beat signal generates the terahertz field, which is then coherently detected by photomixing, employing a time-delayed copy of the same beat signal. Consequently, the receiver current is inherently phase-modulated without additional modulator. Owing to this technique, our broadband terahertz spectrometer performs (200 Hz measurement rate, or 4 THz bandwidth and 117 dB peak dynamic range with averaging) comparably to state-of-the-art terahertz-TDS systems, yet with significantly reduced complexity. Thickness measurements of multilayer dielectric samples with layer-thicknesses down to 23 µm show its potential for real-world applications. Within only 0.2 s measurement time, an uncertainty of less than 2 % is achieved, the highest accuracy reported with continuous-wave terahertz spectroscopy. Hence, the optoelectronic FMCW approach paves the way towards broadband and compact terahertz spectrometers that combine fiber optics and photonic integration technologies.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2007 ◽  
Vol 90 (17) ◽  
pp. 171109 ◽  
Author(s):  
E. A. Michael ◽  
I. Cámara Mayorga ◽  
R. Güsten ◽  
A. Dewald ◽  
R. Schieder

Author(s):  
Takashi Hachiya

Heavy flavor production is a sensitive probe of the initial gluon density in the nucleon and is modified by the entire evolution of the hot quark and gluon medium created in high-energy nucleus–nucleus collisions. Besides, it is a process that can be calculated by perturbative QCD because of their large mass. The PHENIX experiment at RHIC studied the heavy flavor productions for a broad momentum and rapidity ranges using single leptons from the semileptonic decay of charm and bottom hadrons, and dileptons from [Formula: see text] decays in [Formula: see text], [Formula: see text]A, and Au [Formula: see text] Au collisions at [Formula: see text][Formula: see text]200[Formula: see text]GeV. In these proceedings, the recent experimental results in [Formula: see text], Au [Formula: see text] Au, and the small collision systems are presented and the heavy flavor productions and their modifications are discussed.


Author(s):  
V. M. Lipka ◽  
V. V. Ryukhtin ◽  
Yu. G. Dobrovolsky

Measurement of periodic optical information signals in the background light noise with a photodetector with extended dynamic range is an urgent task of modern electronics and thus has become the aim of this study. To increase the dynamic range of the photodetector, a new version of the automatic gain control (AGC) circuit has been developed, which consists of an AGC controller, an output photodetector amplifier and an AGC detector. The authors measured the dynamic range of the photodetector when receiving optical radiation with a wavelength of 1064 nm in the power range from 2.10–8 to 2.10–5 W at a modulation frequency of 20 kHz with the AGC on. Under these conditions, the dynamic range of the photodetector was found to be up to 67 dB. If the AGC was off, the dynamic range did not exceed 30 dB. Thus, the study made it possible to create a photodetector with an extended dynamic range up to 67 dB based on a new version of the AGC circuit. The design of the photodetector allowed choosing a useful signal of a particular modulation frequency in the frequency range from 3 to 45 kHz and effectively suppresses the frequencies caused by optical interference in the low frequency range from the frequency of the input signal of constant amplitude up to 3 kHz inclusive. This compensates the current up to 15 mA, which is equivalent to the power of light interference of about 15 mW. Further research should address the issues of reliability of the proposed photodetector design and optimization of its optical system. The photodetector can be used in geodesy and ambient air quality monitoring.


Author(s):  
Rarika Ravi ◽  
Anu Assis

<p>This paper discusses about different receiver designs adopted so far for various electronic toll collection systems. A comparative analysis based on the discussions is also provided. It shows that each design has it's own advantages and disadvantages compared to others. The main aim of this paper is to identify the most suitable design. The researches shows that the receiver design described in the 5.8GHz digitally controlled DSRC receiver for Chinese electronic toll collection system is the most suitable one. Here all RF, IF blocks and digital baseband for on-chip automatic gain control, are integrated on an RF-SoC. The proposed digitally controlled LNA and mixer circuits are elaborated. The technology used is 0.13μm CMOS technology. The RF block occupies a chip area of 0.75mm2. It consumes 22mA under a 1.5V supply voltage. The bit error rate maintains better than 10-6, the input power level varies from -75dBm to -8dBm. This design provides a receiver sensitivity improvement of at least 25%, and a dynamic range enhancement of at least 12%.</p>


2015 ◽  
Author(s):  
Sumeet Shrestha ◽  
Hiroki Kamehama ◽  
Shoji Kawahito ◽  
Keita Yasutomi ◽  
Keiichiro Kagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document