scholarly journals Processing Strategy and Comparative Performance of Different Mobile LiDAR System Grades for Bridge Monitoring: A Case Study

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7550
Author(s):  
Yi-Chun Lin ◽  
Jidong Liu ◽  
Yi-Ting Cheng ◽  
Seyyed Meghdad Hasheminasab ◽  
Timothy Wells ◽  
...  

Collecting precise as-built data is essential for tracking construction progress. Three-dimensional models generated from such data capture the as-is conditions of the structures, providing valuable information for monitoring existing infrastructure over time. As-built data can be acquired using a wide range of remote sensing technologies, among which mobile LiDAR is gaining increasing attention due to its ability to collect high-resolution data over a relatively large area in a short time. The quality of mobile LiDAR data depends not only on the grade of onboard LiDAR scanners but also on the accuracy of direct georeferencing information and system calibration. Consequently, millimeter-level accuracy is difficult to achieve. In this study, the performance of mapping-grade and surveying-grade mobile LiDAR systems for bridge monitoring is evaluated against static laser scanners. Field surveys were conducted over a concrete bridge where grinding was required to achieve desired smoothness. A semi-automated, feature-based fine registration strategy is proposed to compensate for the impact of georeferencing and system calibration errors on mobile LiDAR data. Bridge deck thickness is evaluated using surface segments to minimize the impact of inherent noise in the point cloud. The results show that the two grades of mobile LiDAR delivered thickness estimates that are in agreement with those derived from static laser scanning in the 1 cm range. The mobile LiDAR data acquisition took roughly five minutes without having a significant impact on traffic, while the static laser scanning required more than three hours.

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 821
Author(s):  
Leszek Bolibok ◽  
Michał Brach

Artificial canopy gaps (forest openings) are frequently used as an element of regeneration cutting. The development of regeneration in gaps can be controlled by selecting a relevant size and shape for the gap, which will regulate the radiation microclimate inside it. Based on the size and shape of a gap computer models can assess where solar radiation is decreased or eliminated by the surrounding canopy. The accuracy of such models to a large extent depends on how the modeled shape of a gap matches the actual shape of the gap. The aim of this study was to compare the results of modeling solar radiation availability by applying Solar Radiation Tools (SRT) that use a different digital surface model (DSM) for a description of the shape of a studied gap, with the results of the analysis of 27 hemispherical photographs. The three-dimensional gap shape was approximated with the use of simple geometrical prisms or airborne laser scanning (LiDAR) data. The impact of two variations of exposure (automatic and manual underexposure) and two variations of automatic thresholding on the congruence of SRT and Gap Light Analyzer (GLA) results were studied. Taking into account information on differences in height between trees surrounding the gap enhanced the results of modeling. The best results were obtained when the boundary of the gap base estimated from LiDAR was expanded in all directions by a value close to a mean radius of the crowns of surrounding trees. Modeling of radiation conditions on the gap floor based on LiDAR data by an SRT program is efficient and more time effective than taking hemispherical photographs. The proposed solution can be successfully applied as a trustworthy source of information about light conditions in gaps, which is needed for management decision-making in silviculture.


2017 ◽  
Vol 824 ◽  
pp. 866-885 ◽  
Author(s):  
Ali Mazloomi Moqaddam ◽  
Shyam S. Chikatamarla ◽  
Iliya V. Karlin

Recent experiments with droplets impacting macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. Here we present a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantifies the roles played by various external and internal forces. For the first time, accurate three-dimensional simulations involving realistic macro-textured surfaces are performed. After demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analysing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyse the role played by the texture density. Moreover, we report a nonlinear behaviour of the contact time with the increase of the Weber number for imperfectly coated textures, and study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.


2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
So-Young Park ◽  
Dae Geon Lee ◽  
Eun Jin Yoo ◽  
Dong-Cheon Lee

Light detection and ranging (LiDAR) data collected from airborne laser scanning systems are one of the major sources of spatial data. Airborne laser scanning systems have the capacity for rapid and direct acquisition of accurate 3D coordinates. Use of LiDAR data is increasing in various applications, such as topographic mapping, building and city modeling, biomass measurement, and disaster management. Segmentation is a crucial process in the extraction of meaningful information for applications such as 3D object modeling and surface reconstruction. Most LiDAR processing schemes are based on digital image processing and computer vision algorithms. This paper introduces a shape descriptor method for segmenting LiDAR point clouds using a “multilevel cube code” that is an extension of the 2D chain code to 3D space. The cube operator segments point clouds into roof surface patches, including superstructures, removes unnecessary objects, detects the boundaries of buildings, and determines model key points for building modeling. Both real and simulated LiDAR data were used to verify the proposed approach. The experiments demonstrated the feasibility of the method for segmenting LiDAR data from buildings with a wide range of roof types. The method was found to segment point cloud data effectively.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8327
Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Francesco Bertini ◽  
Simone Rosa Taddei ◽  
Ennio Spano ◽  
...  

This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions.


2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Markus Häfele ◽  
Christoph Traxinger ◽  
Marius Grübel ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
...  

An experimental and numerical study on the flow in a three-stage low-pressure (LP) industrial steam turbine is presented and analyzed. The investigated LP section features conical friction bolts in the last and a lacing wire in the penultimate rotor blade row. These part-span connectors (PSC) allow safe turbine operation over an extremely wide range and even in blade resonance condition. However, additional losses are generated which affect the performance of the turbine. In order to capture the impact of PSCs on the flow field, extensive measurements with pneumatic multihole probes in an industrial steam turbine test rig have been carried out. State-of-the-art three-dimensional computational fluid dynamics (CFD) applying a nonequilibrium steam (NES) model is used to examine the aerothermodynamic effects of PSCs on the wet steam flow. The vortex system in coupled LP steam turbine rotor blading is discussed in this paper. In order to validate the CFD model, a detailed comparison between measurement data and steady-state CFD results is performed for several operating conditions. The investigation shows that the applied one-passage CFD model is able to capture the three-dimensional flow field in LP steam turbine blading with PSC and the total pressure reduction due to the PSC with a generally good agreement to measured values and is therefore sufficient for engineering practice.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1342
Author(s):  
Lanqian Li ◽  
Ningjing Xie ◽  
Longyan Fu ◽  
Kaijun Zhang ◽  
Aimei Shao ◽  
...  

Doppler wind lidar has played an important role in alerting low-level wind shear (LLW). However, these high-resolution observations are underused in the model-based analysis and forecasting of LLW. In this regard, we employed the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3D-VAR) system to investigate the impact of lidar data assimilation (DA) on LLW simulations. Eight experiments (including six assimilation experiments) were designed for an LLW process as reported by pilots, in which different assimilation intervals, assimilation timespans, and model vertical resolutions were examined. Verified against observations from Doppler wind lidar and an automated weather observing system (AWOS), the introduction of lidar data is helpful for describing the LLW event, which can represent the temporal and spatial features of LLW, whereas experiments without lidar DA have no ability to capture LLW. While lidar DA has an obviously positive role in simulating LLW in the 10–20 min after the assimilation time, this advantage cannot be maintained over a longer time. Therefore, a smaller assimilation interval is favorable for improving the simulated effect of LLW. In addition, increasing the vertical resolution does not evidently improve the experimental results, either with or without assimilation.


2020 ◽  
Vol 494 (4) ◽  
pp. 5360-5373 ◽  
Author(s):  
Rémi Kazeroni ◽  
Ernazar Abdikamalov

ABSTRACT The explosion of massive stars in core-collapse supernovae may be aided by the convective instabilities that develop in their innermost nuclear burning shells. The resulting fluctuations support the explosion by generating additional turbulence behind the supernova shock. It was suggested that the buoyant density perturbations arising from the interaction of the pre-collapse asymmetries with the shock may be the primary contributor to the enhancement of the neutrino-driven turbulent convection in the post-shock region. Employing three-dimensional numerical simulations of a toy model, we investigate the impact of such density perturbations on the post-shock turbulence. We consider a wide range of perturbation parameters. The spatial scale and the amplitude of the perturbations are found to be of comparable importance. The turbulence is particularly enhanced when the perturbation frequency is close to that of the convective turnovers in the gain region. Our analysis confirms that the buoyant density perturbations is indeed the main source of the additional turbulence in the gain region, validating the previous order-of-magnitude estimates.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Haojing Huang ◽  
Zhiming Cui ◽  
Shukui Zhang

This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user’s spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.


Author(s):  
Ernst Assinann ◽  
Human Ramezani

For many years in car development the future customer was first represented by templates. Today and in fact for a long time now CAD tools are solely used for designing a car and therefore man had to be integrated into that environment as well. 1986 the German car industry joined in a research program to produce a common man model for the use in automotive design. This program called RAMSIS has been in practical use at BMW since the early nineties. All “static” situations can be assessed with RAMSIS today including dynamic movements of arms and legs. For entry and egress and for the final confirmation, three dimensional mock-ups are tested by a number of in-house test subjects. Their body dimensions have to be known in order to compare their assessments with the customer population. Therefore we regularly measure members of the research and development center using all methods, from the conventional yardstick to current laser scanning techniques. Hand in hand with DMU methods Virtual Reality has gained access to development processes. The goal of DMU, to eliminate the time consuming and expensive hardware loops and replace them as much as possible by digital models, is effectively supported by VR techniques that speed up processes by enhancing the man-machine-interaction. There is a wide range of application fields to use these techniques, e.g. design review, assembly and maintenance simulation and training. RAMSIS is integrated in the BMW VR environment with special extensions to allow immersive ergonomic research. Mixed mock-up applications are used to have virtual experiences, to verify or to train assembly procedures at an early stage of development and therefore eliminate problems as soon as possible. New concepts can be evaluated and assessed taking ergonomic aspects and disturbing influences into account.


Sign in / Sign up

Export Citation Format

Share Document