scholarly journals Drought and Elevated CO2 Impacts Photosynthesis and Biochemicals of Basil (Ocimum basilicum L.)

Stresses ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 223-237
Author(s):  
T. Casey Barickman ◽  
Bikash Adhikari ◽  
Akanksha Sehgal ◽  
C. Hunt Walne ◽  
K. Raja Reddy ◽  
...  

Drought-induced reduction in crop growth and productivity can be compensated by increasing atmospheric carbon dioxide (CO2), a significant contributor to climate change. Drought stress (DS) affects crops worldwide due to dwindling water resources and irregular rainfall patterns. The experiment was set up under a randomized complete block design within a three-by-two factorial arrangement. Six SPAR chambers represent three blocks (10 replications each), where each chamber has 30 pots in three rows. Each chamber was maintained with 30/22 (day/night) °C temperature, with either ambient (aCO2; 420 ppm) or elevated CO2 (eCO2; 720 ppm) concentrations. This experiment was designed to address the impact of DS on the physiological and biochemical attributes and study how the eCO2 helps alleviate the adversity of DS in basil. The study demonstrated that DS + eCO2 application highly accelerated the decrease in all forms of carotene and xanthophylls. eCO2 positively influenced and increased anthocyanin (Antho) and chlorophyll (LChl). eCO2 supplementation increased LChl content in basil under DS. Furthermore, DS significantly impeded the photosynthetic system in plants by decreasing CO2 availability and causing stomatal closure. Although eCO2 did not increase net photosynthesis (Pn) activity, it decreased stomatal conductance (gs) and leaf transpiration rate (E) under DS, showing that eCO2 can improve plant water use efficiency by lowering E and gs. Peroxidase and ascorbate activity were higher due to the eCO2 supply to acclimate the basil under the DS condition. This study suggests that the combination of eCO2 during DS positively impacts basil’s photosynthetic parameters and biochemical traits than aCO2.

2014 ◽  
Vol 7 (3) ◽  
pp. 285-290 ◽  
Author(s):  
M. Sanders ◽  
S. Landschoot ◽  
K. Audenaert ◽  
G. Haesaert ◽  
M. Eeckhout ◽  
...  

The present study, set up in the growing season 2011-2012, was designed to obtain quantitative data on the occurrence of deoxynivalenol in wheat grain and the corresponding wheat dust. The field experiment consisted of a complete randomised block design with five wheat varieties sown on a field on which maize was grown in the previous season. The impact of the tillage method and the influence of the wheat variety resistance on the deoxynivalenol content of wheat and wheat dust were investigated. The accumulation of deoxynivalenol in wheat dust was confirmed and a sigmoidal relationship between the deoxynivalenol content in wheat dust versus wheat grain was determined. Deoxynivalenol reduction was obtained by ploughing and by sowing moderately resistant wheat varieties. As wheat dust provides equal results and solves the problem of heterogeneity during sampling of conventional wheat matrix, the sampling of wheat dust can be considered as a promising alternative.


Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 182 ◽  
Author(s):  
Yu Chen ◽  
Clément Martin ◽  
Junior Corneille Fingu Mabola ◽  
François Verheggen ◽  
Zhenying Wang ◽  
...  

Climate change is a major environmental concern and is directly related to the increasing concentrations of greenhouse gases. The increase in concentrations of atmospheric carbon dioxide (CO2), not only affects plant growth and development, but also affects the emission of plant organic volatile compounds (VOCs). Changes in the plant odor profile may affect the plant-insect interactions, especially the behavior of herbivorous insects. In this study, we compared the foraging behavior of corn leaf aphid (Rhopalosiphum maidis) on barley (Hordeum vulgare L.) seedlings grown under contrasted CO2 concentrations. During the dual choice bioassays, the winged and wingless aphids were more attracted by the VOCs of barley seedlings cultivated under ambient CO2 concentrations (aCO2; 450 ppm) than barley seedlings cultivated under elevated CO2 concentrations (eCO2; 800 ppm), nymphs were not attracted by the VOCs of eCO2 barley seedlings. Then, volatile compositions from 14-d-old aCO2 and eCO2 barley seedlings were investigated by GC-MS. While 16 VOCs were identified from aCO2 barley seedlings, only 9 VOCs were found from eCO2 barley seedlings. At last, we discussed the potential role of these chemicals observed during choice bioassays. Our findings lay foundation for functional response of corn leaf aphid under climate change through host plant modifications.


2015 ◽  
Vol 73 (3) ◽  
pp. 633-640 ◽  
Author(s):  
Dennis D. U. Heinrich ◽  
Sue-Ann Watson ◽  
Jodie L. Rummer ◽  
Simon J. Brandl ◽  
Colin A. Simpfendorfer ◽  
...  

Abstract Increased oceanic uptake of atmospheric carbon dioxide (CO2) is a threat to marine organisms and ecosystems. Among the most dramatic consequences predicted to date are behavioural impairments in marine fish which appear to be caused by the interference of elevated CO2 with a key neurotransmitter receptor in the brain. In this study, we tested the effects of elevated CO2 on the foraging and shelter-seeking behaviours of the reef-dwelling epaulette shark, Hemiscyllium ocellatum. Juvenile sharks were exposed for 30 d to control CO2 (400 µatm) and two elevated CO2 treatments (615 and 910 µatm), consistent with medium- and high-end projections for ocean pCO2 by 2100. Contrary to the effects observed in teleosts and in some other sharks, behaviour of the epaulette shark was unaffected by elevated CO2. A potential explanation is the remarkable adaptation of H. ocellatum to low environmental oxygen conditions (hypoxia) and diel fluctuations in CO2 encountered in their shallow reef habitat. This ability translates into behavioural tolerance of near-future ocean acidification, suggesting that behavioural tolerance and subsequent adaptation to projected future CO2 levels might be possible in some other fish, if adaptation can keep pace with the rate of rising CO2 levels.


2018 ◽  
Vol 66 (7) ◽  
pp. 479 ◽  
Author(s):  
Belinda Fabian ◽  
Brian J. Atwell ◽  
Lesley Hughes

Extrafloral nectar attracts ants, whose presence provides protection for the plant against herbivores. Extrafloral nectar is thus a critical component of many plant–insect mutualisms worldwide, so environmental perturbations that alter extrafloral nectar production or composition could be disruptive. The carbon–nutrient balance hypothesis predicts that under elevated CO2 the total volume of extrafloral nectar will increase but the proportion of the foliar carbohydrate pool secreted as extrafloral nectar will decrease, without any change in the sugar composition of the extrafloral nectar. We investigated the impact of elevated atmospheric CO2 on extrafloral nectar in an Australian wild cotton species, Gossypium sturtianum J.H.Willis. Under elevated CO2 there was an increase in the proportion of leaves actively producing nectar and a decrease in the nectar volume per active leaf. Elevated CO2 did not affect the total volume or composition of extrafloral nectar, but there was a change in how the nectar was distributed within the leaf canopy, as well as evidence of increased turnover of leaves and earlier onset of flowering. By the end of the study, there was no difference in the total resources allocated to extrafloral nectar under elevated CO2, which contrasts with the predictions of the carbon-nutrient balance hypothesis. Developmental changes, however, could affect the timing of extrafloral nectar production which could, in turn, alter the foraging patterns of ants and their defence of plants.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2646
Author(s):  
Eloísa Agüera ◽  
Purificación de la Haba

The biochemical, biological, and morphogenetic processes of plants are affected by ongoing climate change, causing alterations in crop development, growth, and productivity. Climate change is currently producing ecosystem modifications, making it essential to study plants with an improved adaptive capacity in the face of environmental modifications. This work examines the physiological and metabolic changes taking place during the development of sunflower plants due to environmental modifications resulting from climate change: elevated concentrations of atmospheric carbon dioxide (CO2) and increased temperatures. Variations in growth, and carbon and nitrogen metabolism, as well as their effect on the plant’s oxidative state in sunflower (Helianthus annus L.) plants, are studied. An understanding of the effect of these interacting factors (elevated CO2 and elevated temperatures) on plant development and stress response is imperative to understand the impact of climate change on plant productivity.


2013 ◽  
Vol 40 (2) ◽  
pp. 160 ◽  
Author(s):  
Eduardo Dias de Oliveira ◽  
Helen Bramley ◽  
Kadambot H. M. Siddique ◽  
Samuel Henty ◽  
Jens Berger ◽  
...  

Wheat (Triticum aestivum L.) production may be affected by the future climate, but the impact of the combined increases in atmospheric CO2 concentration, temperature and incidence of drought that are predicted has not been evaluated. The combined effect of elevated CO2, high temperature and terminal drought on biomass accumulation and grain yield was evaluated in vigorous (38–19) and nonvigorous (Janz) wheat genotypes grown under elevated CO2 (700 µL L–1) combined with temperatures 2°C, 4°C and 6°C above the current ambient temperature. Terminal drought was induced in all combinations at anthesis in a split-plot design to test whether the effect of elevated CO2 combined with high temperature ameliorates the negative effects of terminal drought on biomass accumulation and grain yield. Biomass and grain yield were enhanced under elevated CO2 with 2°C above the ambient temperature, regardless of the watering regimen. The combinations of elevated CO2 plus 4°C or 6°C above the ambient temperature did not enhance biomass and grain yield, but tended to decrease them. The reductions in biomass and grain yield (45–50%) caused by terminal drought were less severe (21–28%) under elevated CO2 with 2°C above the ambient temperature. The amelioration resulted from a 63% increase in the rate of leaf net photosynthesis in 38–19 and a 39% increase in tillering and leaf area in Janz. The contrasting responses and phenological development of these two genotypes to the combination of elevated CO2, temperature and terminal drought, and the possible influences on their source–sink relationships are discussed.


2017 ◽  
Vol 74 (7) ◽  
pp. 1893-1905 ◽  
Author(s):  
Alexander J. Bergan ◽  
Gareth L. Lawson ◽  
Amy E. Maas ◽  
Zhaohui Aleck Wang

Abstract Shelled pteropods are planktonic molluscs that may be affected by ocean acidification. Limacina retroversa from the Gulf of Maine were used to investigate the impact of elevated carbon dioxide (CO2) on shell condition as well as swimming and sinking behaviours. Limacina retroversa were maintained at either ambient (ca. 400 µatm) or two levels of elevated CO2 (800 and 1200 µatm) for up to 4 weeks, and then examined for changes in shell transparency, sinking speed, and swimming behaviour assessed through a variety of metrics (e.g. speed, path tortuosity, and wing beat frequency). After exposures to elevated CO2 for as little as 4 d, the pteropod shells were significantly darker and more opaque in the elevated CO2 treatments. Sinking speeds were significantly slower for pteropods exposed to medium and high CO2 in comparison to the ambient treatment. Swimming behaviour showed less clear patterns of response to treatment and duration of exposure, but overall, swimming did not appear to be hindered under elevated CO2. Sinking is used by L. retroversa for predator evasion, and altered speeds and increased visibility could increase the susceptibility of pteropods to predation.


Author(s):  
Ayman EL Sabagh ◽  
Akbar Hossain ◽  
Mohammad Sohidul Islam ◽  
Muhammad Aamir Iqbal ◽  
Ali Raza ◽  
...  

The rising concentration of atmospheric carbon dioxide (aCO2) and increasing temperature are the main reasons for climate change, which are significantly affecting crop production systems in this world. However, the elevated carbon dioxide (CO2) concentration can improve the growth and development of crop plants by increasing photosynthetic rate (higher availability of photoassimilates). The combined effects of elevated CO2 (eCO2) and temperature on crop growth and carbon metabolism are not adequately recognized, while both eCO2 and temperature triggered noteworthy changes in crop production. Therefore, to increase crop yields, it is important to identify the physiological mechanisms and genetic traits of crop plants which play a vital role in stress tolerance under the prevailing conditions. The eCO2 and temperature stress effects on physiological aspects as well as biochemical profile to characterize genotypes that differ in their response to stress conditions. The aim of this review is directed the open-top cavities to regulate the properties like physiological, biochemical, and yield of crops under increasing aCO2, and temperature. Overall, the extent of the effect of eCO2 and temperature response to biochemical components and antioxidants remains unclear, and therefore further studies are required to promote an unperturbed production system.


Author(s):  
Sumit Kumar Dey ◽  
B. Chakrabarti ◽  
R Prasanna ◽  
S. D. Singh ◽  
T J Purakayastha ◽  
...  

Increase in the concentration of atmospheric carbon dioxide (CO2) has significant impact on crop growth and productivity. A study was undertaken during the kharif season to study the impacts of elevated CO2 and cyanobacterial inoculation on growth and yield of mungbean crop under different doses of P using Free Air Carbon dioxide Enrichment (FACE) facility. The crop was grown under two CO2 levels i.e., ambient (400 µmol mol-1) and elevated (550 ± 20 µmol mol-1), with five levels of P (0, 8, 12, 16 and 20 mg P kg-1 soil) and 2 levels of calothrix sp. (with and without cyanobacteria) inoculation. Elevated CO2 level increased seed yield by 35.0% and biomass yield by 31.3%. Leaf area, photosynthesis rate and leaf chlorophyll content significantly increased at high CO2 level. Yield attributes such as number of pods plant-1, number of seeds pod-1 and test weight also increased at high CO2 level. Application of P and cyanobacterial inoculation further increased growth and yield of the crop. The study showed that application of P as well as cyanobacteria could help in improving productivity of legumes under elevated CO2 condition.


2013 ◽  
Vol 27 (2) ◽  
pp. 151-158 ◽  
Author(s):  
S. Jezierska-Tys ◽  
A. Rutkowska

Abstract The effect of chemicals (Reglone 200 SL and Elastiq 550 EC) on soil microorganisms and their enzymatic activity was estimated. The study was conducted in a field experiment which was set up in the split-block design and comprised three treatments. Soil samples were taken six times, twice in each year of study. The results showed that the application of chemicals generally had no negative effect on the number of soil microorganisms. The application of Reglone 200 SL caused an increase of proteolytic and ureolytic activity and affected the activity of dehydrogenases, acid and alkaline phosphatases in the soil. The soil subjected of Elastiq 550 EC was characterized by lower activity of dehydrogenases, protease, urease and alkaline phosphatase.


Sign in / Sign up

Export Citation Format

Share Document