scholarly journals Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan

2020 ◽  
Vol 12 (3) ◽  
pp. 1216 ◽  
Author(s):  
Muhammad Aamir Khan ◽  
Alishba Tahir ◽  
Nabila Khurshid ◽  
Muhammad Iftikhar ul Husnain ◽  
Mukhtar Ahmed ◽  
...  

This research combined global climate, crop and economic models to examine the economic impact of climate change-induced loss of agricultural productivity in Pakistan. Previous studies conducted systematic model inter-comparisons, but results varied widely due to differences in model approaches, research scenarios and input data. This paper extends that analysis in the case of Pakistan by taking yield decline output of the Decision Support System for Agrotechnology Transfer (DSSAT) for CERES-Wheat, CERES-Rice and Agricultural Production Systems Simulator (APSIM) crop models as an input in the global economic model to evaluate the economic effects of climate change-induced loss of crop production by 2050. Results showed that climate change-induced loss of wheat and rice crop production by 2050 is 19.5 billion dollars on Pakistan’s Real Gross Domestic Product coupled with an increase in commodity prices followed by a notable decrease in domestic private consumption. However, the decline in the crops’ production not only affects the economic agents involved in the agriculture sector of the country, but it also has a multiplier effect on industrial and business sectors. A huge rise in commodity prices will create a great challenge for the livelihood of the whole country, especially for urban households. It is recommended that the government should have a sound agricultural policy that can play a role in influencing its ability to adapt successfully to climate change as adaption is necessary for high production and net returns of the farm output.

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 536
Author(s):  
Marinos Markou ◽  
Anastasios Michailidis ◽  
Efstratios Loizou ◽  
Stefanos A. Nastis ◽  
Dimitra Lazaridou ◽  
...  

Agriculture is highly dependent on climate change, and Cyprus especially is experiencing its impacts on agricultural production to a greater extent, mainly due to its geographical location. The adaptation of farming to the effects of global climate change may lead to the maximization of agricultural production, which is an important and desirable improvement. The main aim of this paper is to rank and quantify the impacts of climate change on the agricultural sector of Cyprus, through a multi-round Delphi survey seeking a consensus agreement in a group of experts. A multidisciplinary group of 20 experts stated their willingness-to-pay for various impacts of climate change. By applying this method, the individual impacts of climate change on crop production and water resources were brought into the modeling effort on equal footing with cost values. The final cost impact estimate represents the total estimated cost of climate change in the agricultural sector. According to the results, this cost reaches EUR 25.08 million annually for the agricultural sector, and EUR 366.48 million for the whole country. Therefore, it is expected that in the seven-year programming period 2014–2020 the total cost of climate change on agriculture ranges from EUR 176 to EUR 2565 million. The most significant impacts are due to the increasing level of CO2 in the atmosphere and the burden of biodiversity and ecosystems.


2021 ◽  
Vol 51 (8) ◽  
Author(s):  
Uzair Ali ◽  
Wang Jing ◽  
Jialin Zhu ◽  
Zhibek Omarkhanova ◽  
Shah Fahad ◽  
...  

ABSTRACT: The current article looks at the effects of climate change on agriculture, especially crop production, and influence factors of agricultural development in terms of their rational use in Pakistan. Due to the dependence of economic development, and agriculture in the South Asian region on access to renewable national resources and the associated vulnerability to climate change, the limited financial and professional resources of the Islamic Republic of Pakistan require a clear definition of national priorities in this area. In the preparation of this article, general scientific cognition methods, in particular, empirical-theoretical methods were used. Grouping and classification methods have been used to process and systematize the data. The ability to change productivity, depending on the variation of the average annual air temperature and the average annual precipitation rate, was considered using a two-factor regression model. The main finding of the study is that temperature and precipitation have a negative impact on agricultural production. This study can provide a scientific justification for the specialization of agricultural production in the regions of Pakistan as well as the execution of the necessary agricultural activities.


2020 ◽  
Vol 4 (1) ◽  
pp. 164-175
Author(s):  
Shyam Prasad Wagle

 The study assesses the impact of using new technologies on crop production and marketing of selected crops particularly in the case of the Eastern hills. It also evaluates the role of governmental and non-govrnmental organizations to improve agricultural production systems too. Relevant data have been collected from both primary and secondary sources. Primary data draws from the interview, key informant survey and field observation. For this, 30 percent sample households were selected from three altitude belts (upper, middle and lower belts) ranging from 300 to 2,250 masl along the Koshi-highway. It has a wide range of climates, ranging from sub-tropical to alpine with monsoon precipitation in the summer for three and half months and therefore it has diversity in flora and fauna, and people. Similarly, secondary data havebeen gathered from various books, journals and official records. This paper presented that the crucial impact of acceptance of innovative methods in agriculture in the study area is a combined effort of both local people and government. The government together with the development agencies and non-government organizations has contributed to impart knowledge of the agriculture innovative methods in the local farmers and at the same time, the farmers were enthusiastic to learn and adopt those methods. As a result, one can easily see the remarkable changes in crop production due to the impact of new technologies.


2020 ◽  
Vol 162 (2) ◽  
pp. 175-192
Author(s):  
Emilie Stokeld ◽  
Simon A. Croft ◽  
Jonathan M. H. Green ◽  
Christopher D. West

Abstract The global food system is increasingly interconnected and under pressure to support growing demand. At the same time, crop production is facing new and uncertain impacts from climate change. To date, understanding how downstream supply chain actors, such as commodity traders, are exposed to climate change risks has been difficult due to a lack of high-resolution climate and trade data. However, the recent availability of supply chain data linking subnational production to downstream actors, and gridded projections of crop yield under climate change, allows us to assess individual commodity trader exposure to long-term climate change risk. We apply such an analysis to soy production in Brazil, the world’s largest soy exporter. Whilst uncertainty across crop models’ yield projections means it remains difficult to accurately predict how production across the region will be affected by climate change, we demonstrate that the risk exposure of trading actors differs substantially due to the heterogeneity in their sourcing. Our study offers a first attempt to analyze subnational climate risk to individual trading actors operating across an entire production landscape, leading to more precise risk exposure analysis. With sufficient subnational data, this method can be applied to any crop and country combination, and in the context of wider food security issues, it will be pertinent to apply these methods across other production systems and downstream actors in the food system.


2020 ◽  
Vol 4 (1) ◽  
pp. 129-139
Author(s):  
Naresh Bhakta Adhikari

The paper mainly analyses the environmental threats focusing on climate change to human security in Nepal. Major aspects of human security are interlinked and interconnected in our context. Among them, human security offers much to the vibrant field of environmental security in Nepal. Environmental threats are linked to the overall impact on human survival, well-being, and productivity. A great deal of human security is tied to peoples’ access to natural resources and vulnerabilities to environmental change. The major environmental threats in our context is the climate change which have widespread implications for Nepal, causing impacts to water availability, agricultural production, forestry, among many other detrimental effects. The critical threat of environmental security needs to be taken into serious consideration to save our succeeding generation. This article primarily interpreted the government action towards emerging environmental threat based on realist approach. For the study of theme of this article, descriptive and analytical research has been used to draw present major environmental threats in Nepal. With consideration to factors, this article attempted to identify the major environmentally vulnerable areas that are likely to hamper the overall status of human security in Nepal. This paper also tried to suggest the measures to enhance the environmental security considering prospects and policy focusing on Nepalese diverse aspects.


Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


1995 ◽  
Vol 30 (2) ◽  
pp. 147-167 ◽  
Author(s):  
Richard M. Adams ◽  
Ronald A. Fleming ◽  
Ching-Chang Chang ◽  
Bruce A. McCarl ◽  
Cynthia Rosenzweig

Author(s):  
Mohamed Nasser Baco

Previous studies suggested that maize is set to become a cash crop while ensuring food security better than any other crop. However, climate change has become one of the key production constraints that are now hampering and threatening the sustainability of maize production systems. We conducted a study to better understand changes here defined as adaptations made by smallholder farmers to ensure food security and improve income through maize production in a climate change context. Our results show that maize farmers in northern Benin mainly rely on traditional seeds. Drought as abiotic stress is perceived by farmers in many agro-ecological zones as a disruptive factor for crop production, including maize. When drought is associated with pest damages, both the quantity (i.e. yield) and the quality (i.e. attributes) of products/harvests are negatively affected. The adverse effects of drought continue to reduce production in different agro-ecological zones of the country, because of the lack of widespread adoption of tolerant varieties. The study suggests actions towards the production of drought-tolerant maize seeds, a promotion of seed companies, the organization of actors and value chains. Apart from climate change, the promotion of value chains is also emerging as one of the important aspects to take into account to sustain maize production in Benin.


Author(s):  
AWO Sourou Malikiyou ◽  
ALE Agbachi Georges ◽  
YABI Ibouraïma

La variabilité climatique dans les communes de Djidja et de Djougou engendre des conséquences aussi bien sur les niveaux de productivités, de production que sur les revenus des exploitants agricoles. L’objectif de cette recherche est d’étudier la vulnérabilité future des systèmes de productions agricoles face aux changements climatiques dans les Communes de Djidja et de Djougou.L’approche méthodologique utilisée comprend la collecte des données, leur traitement et l’analyse des résultats. Les enquêtes ont été faites dans les villages choisis sur la base de critères bien définis (la taille de la population agricole et son implication dans la production agricole). La méthode de D. Schwartz (1995, p. 94) a permis de constituer l’échantillon de 377 producteurs. Enfin, une projection climatique sur la période 2019-2050/2075 est faite au moyen du logiciel climatique « Climate explorer ».Il ressort des résultats de l’étude que, dans la commune de Djougou, la variation au niveau de la température minimale actuelle (RCP8.5) est comprise entre -1,62°C en 1992 et 2,29°C en 2075. La température maximale quant à elle varie entre -1,40°C en 1994 à 2,18°C en 2075. C’est à partir de 2071 que l’augmentation de la température minimale va dépasser les 2°C et si rien n’est fait cette hausse va s’accroître et devenir permanente. De même, dans la commune de Djidja, la température minimale la plus élevée est observée en 2075 avec des variations de 1 à 2°C pour les RCP4.5 et RCP8.5. Au niveau de la température maximale, l’année la moins chaude est 1992 (-1,33mm/jour) pour RCP8.5 et 1991 (-1,02mm/jour) pour RCP4.5. La même évolution s’observe au niveau des températures maximales. L’année 1992 reste la plus déficitaire avec une chute de -1,60°C et l’année la plus excédentaire sera l’année 2075 avec une hausse de 2,18 mm par jour, sur la période 1992-2080. La corrélation est observée en 2042 avec une valeur de 0,322 mm par jour. L’examen des résultats révèle que les valeurs des paramètres climatiques à savoir précipitations et évaporation sont à la hausse sur la période 1980-2080 dans la commune de Djidja. Suivant la trajectoire actuelle, RCP8.5, les années les plus arrosées sont 2037, 2070 et 2073 avec respectivement des variations égales à 0,17mm et 0,27mm de pluie par jour. Face à ces difficultés, les populations agricoles adoptent des mesures pour contrer les contraintes climatiques.ABSTRACTClimatic variability in the communes of Djidja and Djougou has consequences both on the levels of productivity and production and on the income of farmers. The objective of this research is to study the vulnerability of agricultural production systems to climate change in the Communes of Djidja and Djougou.The methodological approach used includes data collection, processing and analysis of the results. The surveys were carried out in the villages chosen on the basis of well-defined criteria (the size of the agricultural population and its involvement in agricultural production). The method of D. Schwartz (1995, p. 94) made it possible to constitute the sample of 377 producers. Finally, a climate projection over the period 2019-2050 / 2075 is made using the climate software "Climate explorer".The results of the study show that, in the municipality of Djougou, the variation in the current minimum temperature (RCP8.5) is between -1.62 ° C in 1992 and 2.29 ° C in 2075. The maximum temperature varies between -1.40 ° C in 1994 to 2.18 ° C in 2075. It is from 2071 that the increase in the minimum temperature will exceed 2 ° C and if nothing is In fact, this increase will increase and become permanent. Similarly, in the municipality of Djidja, the highest minimum temperature is observed in 2075 withvariations of 1 to 2 ° C for RCP4.5 and RCP8.5. At maximum temperature, the coolest year is 1992 (-1.33mm / day) for RCP8.5 and 1991 (-1.02mm / day) for RCP4.5. The same development can be observed at the level of maximum temperatures. The year 1992 remains the most in deficit with a fall of -1.60 ° C and the year the most in surplus will be the year 2075 with an increase of 2.18mm per day, over the period 1992-2080. The correlation is observed in 2042 with a value of 0.322 mm per day. Examination of the results reveals that the values of climatic parameters, namely precipitation and evaporation, are on the rise over the period 1980-2080 in the municipality of Djidja. Following the current trajectory, RCP8.5, the wettest years are 2037, 2070 and 2073 with respectively variations equal to 0.17mm and 0.27mm of rain per day. Faced with these difficulties, agricultural populations are adopting measures to counter climatic constraints. Keywords: Djidja, Djougou, vulnerability, production system, agriculture, climate change.


Sign in / Sign up

Export Citation Format

Share Document