scholarly journals Environmental Analysis of Sustainable and Traditional Cooling and Lubrication Strategies during Machining Processes

2020 ◽  
Vol 12 (20) ◽  
pp. 8462 ◽  
Author(s):  
Amr Salem ◽  
Connor Hopkins ◽  
Mohamd Imad ◽  
Hussien Hegab ◽  
Basil Darras ◽  
...  

Due to rising demands of replacing traditional cooling strategies with sustainable cooling strategies, the development of sustainable strategies such as minimum quantity lubrication (MQL) of nano-cutting fluids (NCFs) is on the rise. MQL of NCFs has received a lot of attention due to its positive impact on machining process efficiency. However, environmental and human health impacts of this strategy have not been fully investigated yet. This work aims to investigate the impacts of MQL of molybdenum disulfide (MoS2), multi-walled carbon nanotubes (MWCNTs), titanium dioxide (TiO2), and aluminum oxide (Al2O3) NCFs by employing a cradle-to-gate type of life cycle assessment (LCA). Besides, this paper provides a comparison of the impacts and machining performance when utilizing MQL of NCFs with other cooling strategies such as traditional flood cooling (TFC) of conventional cutting fluids and MQL of vegetable oils. It was found that NCFs have higher impacts than conventional cutting fluids and vegetable oils. The impacts of TiO2-NCF and MoS2-NCF were lower than the impacts of MWCNTs-NCF and Al2O3-NCF. MQL of NCFs presented higher impacts by 3.7% to 35.4% in comparison with the MQL of vegetable oils. TFC of conventional CFs displayed the lowest impact. However, TFC of conventional cutting fluids is contributing to severe health problems for operators. MQL of vegetable oils displayed higher impacts than TCFs of conventional cutting fluids. However, vegetable oils are considered to be environmentally friendly. According to the findings, the MQL of vegetable oils is the most sustainable strategy for machining processes with associated low/medium cutting temperatures. While MQL of TiO2 and MoS2 NCFs are the sustainable strategy for machining processes associated with high cutting temperatures.

2018 ◽  
Vol 7 (2) ◽  
pp. 116-120
Author(s):  
Amrit Pal ◽  
Hazoor Singh Sidhu

Owing to environmental concerns and growing regulations over contamination and pollution, the demand for renewable and biodegradable cutting fluids is rising. The aim of this paper is to review the eco-friendly and user-friendly minimum quantity lubrication (MQL) technique using vegetable-based oil and solid lubricant in different machining processes. It has been reported in various literature that the minimum quantity lubrication (MQL) method using vegetable oil-based cutting fluid shows superior performance as compared to dry and wet machining. The major benefits of MQL are reduction of consumption of cutting fluid, cost saving, reduction of impact to the environment and improved overall performances in cutting operation and the surface quality. To achieve improved thermal conductivity researchers focused attention on nano fluids. Nano fluids are nano-metered sized colloidal suspensions in the base fluid like water, oil, glycol, etc. The application of nano fluid controls the tool wear by reducing the temperature. Impingement of the nano-particles with high pressure in MQL enables entry of nano-particles at the tool chip interface. Thus it reduces the coefficient of friction and improves machining performance significantly.


2021 ◽  
Vol 23 (04) ◽  
pp. 143-155
Author(s):  
Shrikant U. Gunjal ◽  
◽  
Sudarshan B. Sanap ◽  
Nilesh C. Ghuge ◽  
Satish Chinchanikar ◽  
...  

Cutting fluid is a vital part of the machining process. Cutting fluid is significantly applied tolower the friction and heat generated in the machining zone. It also helps in easy chip removal, protection against oxidation, tool life improvement, and an overall improvement in the quality of the product. The current industrial practices are majorly emphasized on mineral-based oil application under flood lubrication to achieve superior quality. However, these oils and techniques are toxic and environmentally unfriendly. Machining under dry or with minimum quantity lubrication (MQL) has been mostly preferred to eliminate the use of abundant oil. The current research work has established the promising potential for vegetable oils as a cutting fluid under MQL during turning of AISI 4130 steel. The results inferred that vegetable-based cutting fluids performed better over mineral-based cutting fluids in terms of lower values of machined surface roughness, tool wear, cutting forces, and chip-tool interface temperature. The MQL machining performance in terms of cutting forces, surface roughness and tool life has been observed better in comparison to machining under flood and dry cutting conditions.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2018 ◽  
Vol 2 (3) ◽  
pp. 50 ◽  
Author(s):  
Hussien Hegab ◽  
Hossam Kishawy

Difficult-to-cut materials have been widely employed in many engineering applications, including automotive and aeronautical designs because of their effective properties. However, other characteristics; for example, high hardness and low thermal conductivity has negatively affected the induced surface quality and tool life, and consequently the overall machinability of such materials. Inconel 718, is widely used in many industries including aerospace; however, the high temperature generated during machining is negatively affecting its machinability. Flood cooling is a commonly used remedy to improve machinability problems; however, government regulation has called for further alternatives to reduce the environmental and health impacts of flood cooling. This work aimed to investigate the influence of dispersed multi-wall carbon nanotubes (MWCNTs) and aluminum oxide (Al2O3) gamma nanoparticles, on enhancing the minimum quantity lubrication (MQL) technique cooling and lubrication capabilities during turning of Inconel 718. Machining tests were conducted, the generated surfaces were examined, and the energy consumption data were recorded. The study was conducted under different design variables including cutting speed, percentage of added nano-additives (wt.%), and feed velocity. The study revealed that the nano-fluids usage, generally improved the machining performance when cutting Inconel 718. In addition, it was shown that the nanotubes additives provided better improvements than Al2O3 nanoparticles.


2019 ◽  
Vol 11 (4) ◽  
pp. 107-121 ◽  
Author(s):  
Chinmaya PADHY ◽  
Pariniti SINGH

Minimum quantity lubrication (MQL) is currently a widely used lubricating technique during machining, in which minimum amount of lubricant in the form of mist is delivered to the machining interface, thus helps to reduce the negative effects caused to the environment and human health. Further, to enhance the productivity of machining process specifically for hard-to-cut materials, nano cutting fluid (suitably mixed nano materials with conventional cutting fluid) is used as an alternative method to conventional lubrication (wet) in MQL. In this study, h-BN nano cutting fluid was formulated with 0.1% vol. concentration of h-BN in conventional cutting fluid (Servo- ‘S’) for NCF-MQL technique and its tribological behaviors on machining(turning) performance of Inconel 625 were studied and compared with other lubricating conditions (dry, wet, MQL conventional). The tribological effects were analyzed in terms of tool wear analysis, chip morphology along with statistical analysis for machined surface and evolved cutting forces during machining. The optimal input machining parameters for experiments were defined by the use of Taguchi and Grey relational based multi response optimization technique. Finally, the tribological study shows that the use of h-BN NCF-MQL is a viable and sustainable option for improving machining performance of hard- to- cut material like Inconel 625.


Author(s):  
Krzysztof Nadolny ◽  
Seweryn Kieraś ◽  
Paweł Sutowski

Abstract Control of thermal conditions in the grinding zone is possible through effective delivery of substances with cooling, lubricating and antiadhesive properties during the machining process. In addition to the benefits of coolants, however, a number of economic and ecological problems arise, which include the costs of purchase, use and maintenance as well as the environmental impact of its disposal. These negative aspects of the use of cooling and lubricating liquids have contributed to the modern trend of minimizing their output in machining processes, including grinding. This article presents comprehensive characteristics of knowledge in the field of liquids, gases and solids with cooling, lubricating and antiadhesive properties. The author’s original classification of cooling and lubricating agents by their physical state was proposed and a complete list of known modern environmentally friendly methods of cooling and lubrication of the grinding zone was presented. In order to highlight their beneficial features, the background of conventional methods of delivery coolants, lubricants and antiadhesives to the grinding zone used for years were also characterised. A comprehensive list of all known methods of cooling and lubrication of the grinding zone classified according to the physical state of the delivered medium with a clear separation of hybrid methods consisting in simultaneous delivery of many cooling and lubricating agents was described in the summary. The article concludes with the characteristics of directions of further development in the field of cooling and lubrication of the grinding zone.


2015 ◽  
Vol 809-810 ◽  
pp. 135-140 ◽  
Author(s):  
Bogdan Alexandru Chirita ◽  
Nicolae Catalin Tampu

In the last years there has been an increased demand to lower the impact of industrial activities on environment quality. Cutting fluids, among other products, are an important pollutant but they have often been associated with the need for a higher productivity of machining processes. Cutting fluids are a mean of reducing temperature in the cutting area, friction and tool wear but they also represent 7% to 17% of the production costs. Other problems raised by cutting fluids are: microorganism infestation, which can cause pulmonary and dermatological diseases and poor lubrication or corrosion caused by some of the chemicals. Dry cutting is regarded as the cleanest cooling method, but it has a reduced heat dissipation efficiency and practically there is no lubrication. Other relatively new green solutions concern the use of minimum quantity lubrication (MQL) and cryogenic machining.


This project was done to learn the effects of cutting parameters on cutting force and roughness (surface roughnes) of AZ31 magnesium (Mg) alloy. Machining parameters involved in this project are cutting speed, feed rate, and lubrication methods. Deckel Maho DMU 50 eVolution high speed milling machine was using and uncoated carbide button insert was used as the cutting tool. Cutting force was measured during the milling process and roughness was measured after that and cleaning process to ensure no interference that would conflicted the results. The best machining parameters identified when feed rate at 0.05 mm per tooth, cutting speed are at 600 m per min, and minimum quantity lubrication was applied during the machining process. From analysis of variance (ANOVA) table generated by Minitab software, this project can conclude that feed rate, cutting speed, and lubrication methods are significant to cutting force and roughness when machining AZ31 Mg Alloy Therefore, the relationship of surface roughness and cutting force should be taken as a major key point in machining processes. In the automotive field, magnesium was used to fabricate an engine that place at front body due to reduce the weight of vehicle. This design can increase performance and balancing of weight [1].


2018 ◽  
Vol 7 (2) ◽  
pp. 67-69
Author(s):  
Sandeep Kumar ◽  
Sukhpal Singh Chatha ◽  
Rutash Mittal

In all machining processes, tool wear is a major problem and it leads to tool failure. In metal industries, the use of cutting fluids affects both employee’s health and environmental pollution. But the use of cutting fluids becomes necessary to keep tight tolerances and to maintain the work-piece surface properties without damages. Researchers are trying to reduce the use of coolant lubricant fluids in metal cutting to obtain environmental safety. So, to minimize the use of cutting fluids new cutting techniques are investigated. Minimal quantity of Lubrication (MQL) is a recent technique introduced in machining to obtain less tool wear and environment safety. The minimum quantity lubrication was provided with a spray of mixture of air and vegetable oil at suitable pressure. MQL machining was performed much superior compared to dry and wet machining due to substantial reduction in tool wear and cutting zone temperature and a better surface finish. MQL provides neat and clean environment avoiding health hazards due to smoke, fumes and gases etc. In this study work-piece of SAE 1018 were prepared to investigate their Surface finish under turning with coated tool bits. Wear of nose radius of tool bits were analyzed by SEM which results in less wear in MQL process as compared to flood cooling.


Author(s):  
Ibrahim Nouzil ◽  
Abdelkrem Eltaggaz ◽  
Ibrahim Deiab ◽  
Salman Pervaiz

Abstract Minimum quantity lubrication (MQL) with nanocomposite particles is among the new areas of study and has proven to provide very good cooling and lubrication in the machining of difficult to cut materials, such as titanium, Inconel and ADI. It is therefore imperative to understand their effects on the environment in the early stages of investigation, prior to their wide scale usage in industry. This study focuses on the different nanocomposite particles used in previous research, which is available in the literature, and evaluates their sustainability characteristics by investigating the toxicity of these nanocomposite particles on humans. The cooling capabilities of each of the nanoparticles considered is first established from the existing literature and summarized. Human cell viability measured from in vitro toxicity studies of nanoparticles is used as a variable to easily capture the toxicity of nanoparticles. Six different human cell lines were chosen to represent the effects of possible exposure through inhalation [human lung epithelial cells (A549), and bronchial epithelial cells (NL-20)], ingestion (AGS, and HepG2) and dermal contact (THP-1, and human peripheral blood cells). A comparison table was developed (Table 2.0), which provides easy interpretation of the toxicity levels of the five nanoparticles that were considered using all three human cell lines. The drawback of this comparison is the lack of sufficient data to assign conclusive toxicity levels to the nanoparticles. The toxicity studies of nanoparticles on humans is still in its infancy and contradictory results exist for some of the nanoparticles. This is the first attempt to combine the results of the experimental investigations of nano-MQL cooling and the toxicity studies of nanoparticles, allowing researchers to make informed decisions in the selection of the most sustainable nanoparticles in the nano-MQL machining process.


Sign in / Sign up

Export Citation Format

Share Document