scholarly journals Polymeric Waste from Recycling Refrigerators as an Aggregate for Self-Compacting Concrete

2020 ◽  
Vol 12 (20) ◽  
pp. 8731 ◽  
Author(s):  
Lucas Ramon Roque da Silva ◽  
Josimara Aparecida da Silva ◽  
Matheus Brendon Francisco ◽  
Vander Alkmin Ribeiro ◽  
Michel Henry Bacelar de Souza ◽  
...  

The inadequate disposal of household appliances by consumers and industries have annually been generating enormous amounts of polymeric waste (PW). So, the interest in reuse of PW in civil construction has increased. The production of new cementitious materials, such as concrete with PW, proves to be a promising solution to inappropriate disposal of this waste. In this study, self-compacting concrete (SCC) was developed with partial replacement of the coarse aggregates by polymeric waste (PW) from the recycling of refrigerators. In the SCC reference mixture, Portland cement, silica fume, sand, gravel and superplasticizer were used. The study also grouped the gravel as replaced by 5%, 10%, 15% and 20% of PW. In order to analyze the samples, the following tests were used: spreading, viscosity, passing ability, compressive strength, tensile strength, microstructure, modulus of elasticity, specific gravity, absorption, voids index and electrical resistivity. The SCC found showed adequate homogeneity and viscosity, staying within the normative parameters. The mechanical resistance was above 20 MPa; specific mass between 1870 to 2260 kg/m3; modulus of elasticity ranged from 34 to 14 GPa; and electrical resistivity between 319 to 420 ohm.m. Due to the mechanical resistance, the SCC with PW can be used for structural purposes and densely reinforced structures such as pillars, beams and foundation elements.

Author(s):  
Gideon O. Bamigboye ◽  
David O. Olukanni ◽  
Adeola A. Adedeji ◽  
Kayode J. Jolayemi

This study deals mainly with the mix proportions using granite and unwashed gravel as coarse aggregate for self-compacting concrete (SCC) and its workability, by considering the water absorption of unwashed gravel aggregate. Mix proportions for SCC were designed with constant cement and fine aggregate while coarse aggregates content of granite-unwashed gravel combination were varied in the proportion 100%, 90%/10%, 80%/20%, 70%/30%, 60%/40%, 50% /50%, represented by SCC1, SCC2, SCC3, SCC4, SCC5 and SCC6. 100% granite (SCC1) serves as the control. The workability of the samples was quantitatively evaluated by slump flow, T500, L-box, V- funnel and sieve segregation tests. Based on the experimental results, a detailed analysis was conducted. It was found that granite and unwashed gravel with SCC1, SCC2 and SCC3 according to EFNARC (2002) standard have good deformability, fluidity and filling ability, which all passed consistency test. SCC1, SCC2 and SCC3 have good passing ability while all mixes were in the limit prescribed by EFNARC (2002). It can be concluded that the mix design for varying granite-unwashed gravel combination for SCC presented in this study satisfy various requirements for workability hence, this can be adopted for practical concrete structures.


2012 ◽  
Vol 602-604 ◽  
pp. 938-942 ◽  
Author(s):  
Wai Ching Tang

In this paper, the fresh properties of self-compacting concrete (SCC) using recycled coarse aggregate (RCA) were evaluated. Five types of SCC mixtures were made, where the percentage of substitution of natural coarse aggregate by RCA was 0, 25, 50, 75 and 100%. The cement content, water to binder (W/B) ratio and Superplasticizer dosage were kept the same for all mixes. The effects of RCA on the key fresh properties such as filling ability, passing ability, and segregation resistance of SCC were investigated by conducting several fresh concrete tests included slump-flow, L-box, and sieve stability tests. The overall test results suggest that RCA can be used to produce SCC substituting up to 100% natural coarse aggregates without affecting the key fresh properties of concrete.


2019 ◽  
Vol 8 (3) ◽  
pp. 7717-7720

In this investigation the Durability Properties of M60 grade Self compacting concrete (SCC) with partial replacement of cement by GGBS, Lime powder, and Metakaolin. Five mixes were prepared at 25% replacement of cement content with different admixture (.i.e.M1, M2, M3, M4&M5) at 0.34 w/c ratio and 1% super plasticizer dosage by cement content for maintaining required workability. Filling and passing ability were found out by slump test, V-funnel, L-box and U-box before casting the specimens. In this investigation M60 grade designed by means of Nansu method by fulfilling EFNARC guidelines for SCC. Durability properties tested under acid environment with H2SO4 and HCl and Sulphate environment with MgSO4 and Na2SO4 at curing period of 28 days. In this investigation the Lime-powder based mixes shows high durability comparatively to Metakaolin as well as addition of GGBS maintained sufficient compressive strengths


2018 ◽  
Vol 27 (3) ◽  
pp. 328-337
Author(s):  
Dorota Małaszkiewicz ◽  
Daniel Jastrzębski

The article presents the results of research assessing the possibility of making LWSCC from the locally produced sintered fly ash aggregate CERTYD. Two methods of preliminary LWA preparation were applied: pre-soaking with water and coating with a film of cement paste. The following properties of fresh LWSCC were evaluated: slump-flow, time T500 and passing ability using L-Box. Partial replacement of natural sand by fine LW sand (0/0.5 mm) improved filling and passing abilities of fresh concrete, reduced slightly the bulk density, but it resulted in compressive strength loss by 12-18%. In terms of both fresh and hardened concrete properties it is more favorable to use only fine LW sand as natural sand replacement. Considering fresh concrete properties paste impregnation of LW aggregate is more efficient than saturation with water.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
N. Nalanth ◽  
P. Vincent Venkatesan ◽  
M. S. Ravikumar

In this world of rapid urbanization the demand for natural construction materials is increasing day by day which has created a necessity for alternative construction materials. Recycling of materials is a possible way of eradicating the acute shortage of materials. Considerable work has been done in the area of self-compacting concrete by partial replacement of coarse aggregates (CA) with recycled coarse aggregates (RCA) obtained from construction and demolition debris. The present study has been done by adding steel fibers to concrete in a view of improving the mechanical properties of SCC so that it can be applied in beam column joints. An ideal mix proportion was arrived at, as a result of repeated trials and specimens that were cast and cured. The compression, tensile, and flexural strength parameters were determined and the result has been presented. The results obtained reveal that brick bats in combination with steel fibres may be used extensively in SCC.


Author(s):  
Aishwarya Dupaki

Abstract: This paper gives a review on self compacting concrete(SCC) to be made as partial replacing of cement by fly ash and metakaolin and partial replacing of fine aggregate with copper slag. Day by day production of concrete is increasing due to requirement of concrete is increasing with sufficient mechanical and durable properties in construction industry. Self compacting concrete is the special concrete which has ability of passing and filling of every corner of the congested area. So many researches are going on to increase mechanical and durable properties of SCC. Due to shortage of natural aggregates, researches are going on to use by-products or waste material as fine aggregate. Copper slag is a by-product produced during the process of production of copper. To achieve good mechanical and durable properties of self-compacting concrete cementitious material places an important role. Metakaolin and fly ash are used as the partial replacement of cement. In this paper an overview on the literature on mechanical behaviour of self-compacting concrete with partial replacement of cement by fly ash and metakaolin and partial replacement of fine aggregate with copper slag. Keywords: self compacting concrete, copper slag, fly ash, metakaolin, mechanical properties, durability


2018 ◽  
Vol 7 (4.5) ◽  
pp. 566
Author(s):  
Sushree Sangita Rautray ◽  
Manas Ranjan Das

Self-Compacting Concrete (SCC) is becoming a popular choice in concrete industries due to its filling ability in congested reinforcement and its auto compacting nature. In the present work, an attempt has been made to investigate the properties of fresh and hardened concrete made by partial replacement of cement by fly ash and ground granulated blast furnace slag (ggbs) in different percentages. The essential properties of freshly prepared concrete like flowability, passing ability, filling ability are determined by slump flow test, slump flow T50cm, V-funnel, J-ring and L-box test. The values are found to satisfy EFNARC guidelines. Tests have also been conducted to assess and analyze the properties of hardened concrete such as compressive strength, split tensile strength and flexural strength. Thus an attempt has been made to develop a formulation of an economically feasible and environment friendly self-compacting concrete.   


2015 ◽  
Vol 773-774 ◽  
pp. 916-922 ◽  
Author(s):  
Norul Ernida Zainal Abidin ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Kartini Kamaruddin ◽  
Ahmad Farhan Hamzah

Self-compacting concrete which commonly abbrevited as SCC is a special concrete that have the ability to consilodate fully under its own self-weight without any internal or external vibration. This paper presents the experimental investigation carried out to study the strength of self-compacting concrete incorporating bottom ash at different replacement level of natural sand. The composite cement was used and the replacement level of bottom ash to natural sand is set up to 30% by volume. The strength properties such as compressive strength, split tensile strength and flexural strength of the concrete at the age of 7 and 28 days of curing day were conducted. Results shows that the strength of the concrete with bottom ash increased up to replacement level 15% higher than control specimens. This show that bottom ash can be used as supplimentary cementitious materials, having the pozzolanic reactivty.


2021 ◽  
Author(s):  
Sambangi Arunchaitanya ◽  
E. Arunakanthi

Abstract Concrete is the most common heterogeneous material in the construction industry. Admixtures have gained wide use in modern constructions, which are having congested reinforcement with ambitious casting conditions. For such applications, self-compacting concrete (SCC) is the only special concrete, which can have high cohesiveness and fluidity. This paper shows the study on the fresh properties, compressive, flexural and split tensile strength in addition to RCPT, sorptivity of SCC with partially replaced electrically precipitated fly ash (EPFA) from 0 to 30% at 5% interval in cement and polycarboxylate ether-based superplasticizer as a chemical admixture. Compared the results with conventional SCC mix the fresh concrete performance was studied through the measurement of passing ability, filling ability and flowing ability by using L-Box, U-Box, V-Funnel and slump flow. The results showed that 20% EPFA as partial replacement to SCC gives better results than the conventional concrete, thereby leading to economical profits as well as ecological benefits.


Sign in / Sign up

Export Citation Format

Share Document