scholarly journals Farm-Scale Biofuel Crop Adoption and Its Effects on In-Basin Water Balance

2020 ◽  
Vol 12 (24) ◽  
pp. 10596
Author(s):  
Nina Noreika ◽  
Tailin Li ◽  
David Zumr ◽  
Josef Krasa ◽  
Tomas Dostal ◽  
...  

In the face of future climate change, Europe has encouraged the adoption of biofuel crops by its farmers. Such land-use changes can have significant impacts on the water balance and hydrological behavior of a system. While the heavy pesticide use associated with biofuel crops has been extensively studied, the water balance impacts of these crops have been far less studied. We conducted scenario analyses using the Soil and Water Assessment Tool (SWAT) to determine the effects of farm-scale biofuel crop adoption (rapeseed) on a basin’s water balance. We found that rapeseed adoption does not support the goal of developing a sustainable agricultural landscape in the Czech Republic. The adoption of rapeseed also had disproportionate effects on a basin’s water balance depending on its location in the basin. Additionally, discharge (especially surface runoff ratios), evapotranspiration, and available soil water content display significant shifts in the rapeseed adoption scenarios.

2021 ◽  
Author(s):  
Nina Noreika ◽  
Tailin Li ◽  
David Zumr ◽  
Josef krása ◽  
Tomáš Dostál

<p>The Czech Republic is an intensely agricultural country. Agricultural intensification of the Czech Republic started in the 1970s during the Communist regime wherein large monotonous agricultural fields, subsurface tile drainage systems, and artificially straightened streams were incorporated across the landscape. Since 1989 (the end of the Communist era), agricultural land and management has been privatized and has experienced shifts from centrally planned crop rotations to those that are economically-driven. On the other hand, nowadays many Czech farmers are beginning to explore various agricultural conservation practices which can have as significant of an impact as land use changes. The purpose of this study is to determine the effects of various agricultural conservation practices (contour tillage, reduced tillage, and grass strip addition) and decreasing field sizes at the farm scale in a representative agricultural basin in the Czech Republic. We conducted scenario analysis using the Soil and Water Assessment Tool (SWAT) to determine the effects of these measures on basin water balance and soil erosion. Through SWAT we were able to determine which measures are most effective when combined at the farm-scale.</p><p>Acknowledgment: The presented research has been performed within project H2020 No. 773903 Shui, focused on water scarcity in European and Chinese cropping systems and the Grant Agency of Czech Technical University in Prague, No. SGS20/156/OHK1/3T/11.</p>


2013 ◽  
Vol 17 (6) ◽  
pp. 2233-2246 ◽  
Author(s):  
P. D. Wagner ◽  
S. Kumar ◽  
K. Schneider

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three Rivers catchment multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other out. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.


2013 ◽  
Vol 10 (2) ◽  
pp. 1943-1985 ◽  
Author(s):  
P. D. Wagner ◽  
S. Kumar ◽  
K. Schneider

Abstract. Land use changes are altering the hydrologic system and have potentially large impacts on water resources. Rapid socio-economic development drives land use change. This is particularly true in the case of the rapidly developing city of Pune, India. The present study aims at analyzing past land use changes between 1989 and 2009 and their impacts on the water balance in the Mula and Mutha Rivers catchment upstream of Pune. Land use changes were identified from three multitemporal land use classifications for the cropping years 1989/1990, 2000/2001, and 2009/2010. The hydrologic model SWAT (Soil and Water Assessment Tool) was used to assess impacts on runoff and evapotranspiration. Two model runs were performed and compared using the land use classifications of 1989/1990 and 2009/2010. The main land use changes were identified as an increase of urban area from 5.1% to 10.1% and cropland from 9.7% to 13.5% of the catchment area during the 20 yr period. Urbanization was mainly observed in the eastern part and conversion to cropland in the mid-northern part of the catchment. At the catchment scale we found that the impacts of these land use changes on the water balance cancel each other. However, at the sub-basin scale urbanization led to an increase of the water yield by up to 7.6%, and a similar decrease of evapotranspiration, whereas the increase of cropland resulted in an increase of evapotranspiration by up to 5.9%.


Homeopathy ◽  
2020 ◽  
Vol 109 (04) ◽  
pp. 191-197
Author(s):  
Chetna Deep Lamba ◽  
Vishwa Kumar Gupta ◽  
Robbert van Haselen ◽  
Lex Rutten ◽  
Nidhi Mahajan ◽  
...  

Abstract Objectives The objective of this study was to establish the reliability and content validity of the “Modified Naranjo Criteria for Homeopathy—Causal Attribution Inventory” as a tool for attributing a causal relationship between the homeopathic intervention and outcome in clinical case reports. Methods Purposive sampling was adopted for the selection of information-rich case reports using pre-defined criteria. Eligible case reports had to fulfil a minimum of nine items of the CARE Clinical Case Reporting Guideline checklist and a minimum of three of the homeopathic HOM-CASE CARE extension items. The Modified Naranjo Criteria for Homeopathy Inventory consists of 10 domains. Inter-rater agreement in the scoring of these domains was determined by calculating the percentage agreement and kappa (κ) values. A κ greater than 0.4, indicating fair agreement between raters, in conjunction with the absence of concerns regarding the face validity, was taken to indicate the validity of a given domain. Each domain was assessed by four raters for the selected case reports. Results Sixty case reports met the inclusion criteria. Inter-rater agreement/concordance per domain was “perfect” for domains 1 (100%, κ = 1.00) and 2 (100%, κ = 1.00); “almost perfect” for domain 8 (97.5%, κ = 0.86); “substantial” for domains 3 (96.7%, κ = 0.80) and 5 (91.1%, κ = 0.70); “moderate” for domains 4 (83.3%, κ = 0.60), 7 (67.8%, κ = 0.46) and 9 (99.2%, κ = 0.50); and “fair” for domain 10 (56.1%, κ = 0.38). For domains 6A (46.7%, κ = 0.03) and 6B (50.3%, κ = 0.18), there was “slight agreement” only. Thus, the validity of the Modified Naranjo Criteria for Homeopathy tool was established for each of its domains, except for the two that pertain to direction of cure (domains 6A and 6B). Conclusion The Modified Naranjo Criteria for Homeopathy—Causal Attribution Inventory was identified as a valid tool for assessing the likelihood of a causal relationship between a homeopathic intervention and clinical outcome. Improved wordings for several criteria have been proposed for the assessment tool, under the new acronym “MONARCH”. Further assessment of two MONARCH domains is required.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2019 ◽  
Vol 35 (5) ◽  
pp. 723-731 ◽  
Author(s):  
Gurdeep Singh ◽  
Dharmendra Saraswat ◽  
Naresh Pai ◽  
Benjamin Hancock

Abstract. Standard practice of setting up Soil and Water Assessment Tool (SWAT) involves use of a single land use (LU) layer under the assumption that no change takes place in LU condition irrespective of the length of simulation period. This assumption leads to erroneous conclusions about efficacy of management practices in those watersheds where land use changes (LUCs) (e.g. agriculture to urban, forest to agriculture etc.) occur during the simulation period. To overcome this limitation, we have developed a user-friendly, web-based tool named LUU Checker that helps create a composite LU layer by integrating multiple years of LU layers available in watersheds of interest. The results show that the use of composite LU layer for hydrologic response unit (HRU) delineation in 2474-km2 L’Anguile River Watershed in Arkansas was able to capture changed LU at subbasin level by using LU data available in the year 1999 and 2006, respectively. The web-based tool is applicable for large size watersheds and is accessible to multiple users from anywhere in the world. Keywords: Land use, Web-based tool, SWAT, LUU Checker.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Sign in / Sign up

Export Citation Format

Share Document