scholarly journals Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling

2021 ◽  
Vol 13 (1) ◽  
pp. 394
Author(s):  
Matthias Böldt ◽  
Friedhelm Taube ◽  
Iris Vogeler ◽  
Thorsten Reinsch ◽  
Christof Kluß ◽  
...  

For arable stockless farming systems, the integration of catch crops (CC) during the fallow period might be a key for closing the nitrogen (N) cycle, reducing N leaching and increasing the transfer of N to the subsequent crop. However, despite considerable research efforts, the fate of N in such integrated systems remains unclear. To address this, a two-year field experiment was carried out in northern Germany with different CC, including frost-tolerant and frost-killed CC. The experiment started following a two-year ryegrass/red clover ley, which was subsequently sown with a cereal (CE) or a grain legume (field pea, PE). This provided two contrasting systems with high residual N in autumn. The results showed high N uptake of the CC, ranging from 84 to 136 kg N ha−1 with PE as the pre-crop, and from 33 to 110 kg N ha−1 with CE. All CC reduced N leaching compared with the control, a bare fallow over autumn/winter. Of the various CC, the frost-killed CC showed higher leaching compared with the other CCs, indicating mineralisation of the CC residue in the later autumn/winter period. The process based APSIM (Agricultural Production SIMulator) model was used to simulate N cycling for a cereal grain legume rotation, including a frost-killed and a frost resistant CC. While the model simulated the biomass and the N uptake by the crops, as well as the reduction of N leaching with the use of CC well, it under-estimated N leaching from the frost-killed CC. The study showed that all CC were affective at reducing N leaching, but winter hard catch crops should be preferred, as there is a risk of increased leaching following the mineralisation of residues from frost-killed CC.

2008 ◽  
Vol 17 (1) ◽  
pp. 73 ◽  
Author(s):  
A. NYKÄNEN ◽  
A. GRANSTEDT ◽  
L. JAUHIAINEN

Legume-based leys form the basis for crop rotations in organic farming as they fix nitrogen (N) from the atmosphere for the succeeding crops. The age, yield, C:N, biological N fixation (BNF) and total N of red clover-grass leys were studied for their influence on yields, N uptake and N use efficiency (NUE) of the two sequential cereal crops planted after the leys. Mineral N in deeper soil (30-90 cm) was measured to determine N leaching risk. Altogether, four field experiments were carried out in 1994-1998 at two sites. The age of the ley had no significant effect on the yields and N uptake of the two subsequent cereals. Surprisingly, the residual effect of the leys was negligible, at 0–20 kg N ha-1yr-1. On the other hand, the yield and C:N of previous red clover-grass leys, as well as BNF-N and total-N incorporated into the soil influenced subsequent cereals. NUEs of cereals after ley incorporation were rather high, varying from 30% to 80%. This might indicate that other factors, such as competition from weeds, prevented maximal growth of cereals. The mineral N content deeper in the soil was mostly below 10 kg ha-1 in the sandy soil of Juva, but was 5-25 kg ha-1 in clayey soil of Mietoinen.;


2016 ◽  
Vol 67 (12) ◽  
pp. 1252 ◽  
Author(s):  
Andrew L. Fletcher ◽  
John A. Kirkegaard ◽  
Mark B. Peoples ◽  
Michael J. Robertson ◽  
Jeremy Whish ◽  
...  

Despite the potential productivity benefits, intercrops are not widely used in modern, mechanised grain cropping systems such as those practised in Australia, due to the additional labour required and the added complexity of management (e.g. harvesting and handling of mixed grain). In this review we investigate this dilemma using a two-dimensional matrix to categorise and evaluate intercropping systems. The first dimension describes the acquisition and use of resources in complementary or facilitative interactions that can improve resource use efficiency. The outcome of this resource use is often quantified using the land equivalent ratio (LER). This is a measure of the relative land area required as monocultures to produce the same yields as achieved by an intercrop. Thus, an LER greater than 1 indicates a benefit of the intercrop mixture. The second dimension describes the benefits to a farming system arising not only from the productivity benefits relating to increased LER, but from other often unaccounted benefits related to improved product quality, rotational benefits within the cropping system, or to reduced business risks. We contend that a successful intercrop must have elements in both dimensions. To date most intercropping research has considered only one of these two possible dimensions. Intercrops in large, mechanised, rain-fed farming systems can comprise those of annual legumes with non-legume crops to improve N nutrition, or other species combinations that improve water use through hydraulic redistribution (the process whereby a deep-rooted plant extracts water from deep in the soil profile and releases a small proportion of this into the upper layers of the soil at night), or alter disease, pest or weed interactions. Combinations of varieties within cereal varieties were also considered. For our focus region in the southern Australian wheatbelt, we found few investigations that adequately dealt with the systems implications of intercrops on weeds, diseases and risk mitigation. The three main intercrop groups to date were (1) ‘peaola’ (canola-field pea intercrops) where 70% of intercrops (n = 34) had a 50% productivity increase over the monocultures, (2) cereal-grain legume intercrops (n = 22) where 64% showed increases in crop productivity compared with monocultures and (3) mixtures of cereal varieties (n = 113) where there was no evidence of a productivity increase compared with the single varieties. Our review suggests that intercropping may have a role in large rain-fed grain cropping systems, based on the biophysical benefits revealed in the studies to date. However, future research to develop viable intercrop options should identify and quantify the genotypic differences within crop species for adaptation to intercropping, the long-term rotational benefits associated with intercrops, and the yield variability and complexity-productivity trade-offs in order to provide more confidence for grower adoption. Farming systems models will be central to many of these investigations but are likely to require significant improvement to capture important processes in intercrops (e.g. competition for water, nutrients and light).


2020 ◽  
Vol 47 (3) ◽  
pp. 174-186
Author(s):  
Erik S. Jensen ◽  
Iman R. Chongtham ◽  
Nawa R. Dhamala ◽  
Carolina Rodriguez ◽  
Nicolas Carton ◽  
...  

Cropping system diversification is a key factor in developing more sustainable cropping and food systems. The agroecological practice of intercropping, meaning the simultaneous cultivation of two or more species in the same field, has recently gained renewed interest as a means of ecological intensification in European agricultural research. We discuss some recent research developments regarding 1) intercropping for ecological intensification in agroecological and conventional cropping systems, 2) studies on nitrogen resource use by cereal-grain legume intercropping cultivation, 3) the role of intercropping in the management of biotic stressors, especially weeds, and 4) intercropping as a means of creating cropping systems that are more resilient to the abiotic and biotic stress associated with climate change. Finally, we propose methods for the greater adoption of intercropping in European agriculture by unlocking farming systems from upstream and downstream barriers, with the aim of developing more sustainable agricultural and food systems.


2008 ◽  
Vol 23 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Julia Olmstead ◽  
E. Charles Brummer

AbstractThe transition away from forage-based cropping systems in Iowa to corn and soybean rotations since World War II has corresponded with degraded economic and environmental conditions in the state. Falling net incomes for farmers and concern over global warming and the effects of agriculture-related pollution on water, wildlife and human health have increased interest in diversified cropping systems. This paper reviews the benefits of diversifying Iowa corn and soybean rotations with perennial forage species such as alfalfa and red clover. Perennial forage crops improve soil quality, decrease NO3-N leaching and soil erosion, increase carbon sequestration and decrease pesticide and herbicide needs by controlling weed and insect pests. Forage legumes reduce N fertilizer needs for succeeding corn crops at a higher rate than soybeans, and corn crops following forages have higher yields than after corn or soybeans. Farmers who add alfalfa to corn and soybean rotations could realize significant economic gains. A simulated 5-year rotation in Iowa including corn–soybeans–oats/alfalfa–alfalfa–alfalfa would result in a 24% net income increase over 5 years of corn–soybean–corn–soybean–corn, even with government farm support payments for the row crops. Farm policies that encourage commodity production create little incentive for Iowa farmers to diversify their cropping systems beyond corn and soybeans, despite the clear economic and ecological benefits. We recommend increasing federal support for conservation programs that reward environmentally beneficial farm practices such as the Conservation Securities Program and we encourage land grant universities to hire researchers interested in alternative agricultural systems.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 977
Author(s):  
Michela Farneselli ◽  
Paolo Benincasa ◽  
Giacomo Tosti ◽  
Marcello Guiducci ◽  
Francesco Tei

The aim of this experiment was to evaluate the effect of fertilizing processing tomato by coupling the green manuring of fall-winter cover crops with fertigation in spring-summer. In a two-year experiment, seven fertilization treatments were compared: green manuring of pure barley (B100) and pure vetch (V100) sown at 100% of their ordinary seeding rates, green manuring of a barley-vetch mixture at a ratio of 75:25 of their own seed rates (B75V25), fertigation with drip irrigation at a rate of 200 kg ha−1 of nitrogen (N) (Fert_N200), fertigation combined with B100 and B75V25 at a N rate complementary to 200 kg N ha−1 (B100 + Fert and B75V25 + Fert, respectively), and an unfertilized control (N0) with no cover crops for green manuring prior to tomato transplanting or fertigation. The Fert_N200 treatment resulted in maximum tomato N uptake, growth and yield, but caused high N leaching, especially during the no-cover fall-winter period, as was also the case for N0. The V100 treatment promoted quite good tomato N status and yield, but did not reduce N leaching. The B100 and B75V25 treatments reduced N leaching but decreased tomato N uptake, growth and yield. The B100 + Fert and B75V25 + Fert treatments reduced N leaching, likely increased soil N stock, and facilitated optimal tomato N nutrition and maximum yields. Combining fertigation with green manuring of cover crops composed of pure grass or grass-legume mixtures appears to be a very effective and environmentally sound practice for fertilizing high N-demanding spring-summer crops like processing tomato.


2017 ◽  
Vol 68 (11) ◽  
pp. 902 ◽  
Author(s):  
E. Pelzer ◽  
C. Bourlet ◽  
G. Carlsson ◽  
R. J. Lopez-Bellido ◽  
E. S. Jensen ◽  
...  

Grain legumes in cropping systems result in agronomic and environmental benefits. Nevertheless, their areas in Europe have strongly decreased over the past decades. Our aim was to design locally adapted innovative cropping systems including grain legumes for three European local pedoclimatic contexts, to assess their sustainability, and to discuss their feasibility with stakeholders. The methodology included an initial diagnosis of the most frequent cropping systems and local improvement targets in each local context (e.g. improve legume profitability, limit diseases of legumes, reduce intensive use of chemical inputs in cropping systems), the design of innovative legume-based cropping systems during a common workshop, focusing on three aims ((i) decrease pesticide use, (ii) reduce mineral N fertiliser dependency, and (iii) increase yield stability of grain legume crops and other crops of the crop sequence), and their multicriteria sustainability assessment. Stakeholders meetings were organised in each local context to discuss the feasibility of implementing the innovative cropping systems in farmers’ fields (technical implementation of cropping systems and possibility of development of legume sectors). Four to five cropping systems were designed in each local context, with crop sequences longer than references. They included at least two grain legumes (pea, faba bean, chickpea, lentil or lupine), as sole crops or intercropped with cereals. Overall sustainability was similar or improved in 71% of the legume-based cropping systems compared with their corresponding references. Among the designed cropping systems, stakeholders identified feasible ones considering both technical issues and development of legume sectors. The results indicate that reintegrating more grain legumes in the three European local contexts tested will contribute to more sustainable farming systems.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 718 ◽  
Author(s):  
Giacomo Tosti ◽  
Paolo Benincasa ◽  
Michela Farneselli ◽  
Marcello Guiducci ◽  
Andrea Onofri ◽  
...  

In a 4-year study, the biannual crop rotation processing tomato–durum wheat was applied to three cropping systems: (i) an innovative organic coupled with no-tillage (ORG+) where an autumn-sown cover crop was terminated by roller-crimping and then followed by the direct transplantation of processing tomato onto the death-mulch cover; (ii) a traditional organic (ORG) with autumn-sown cover crop that was green manured and followed by processing tomato; and (iii) a conventional integrated low-input (INT) with bare soil during the fall–winter period prior to the processing tomato. N balance, yield and N leaching losses were determined. Innovative cropping techniques such as wheat–faba bean temporary intercropping and the direct transplantation of processing tomato into roll-crimped cover crop biomass were implemented in ORG+; the experiment was aimed at: (i) quantifying the N leaching losses; (ii) assessing the effect of N management on the yield and N utilization; and (iii) comparing the cropping system outputs (yield) in relation to extra-farm N sources (i.e., N coming from organic or synthetic fertilizers acquired from the market) and N losses. The effects of such innovations on important agroecological services such as yield and N recycling were assessed compared to those supplied by the other cropping systems. Independently from the soil management strategy (no till or inversion tillage), cover crops were found to be the key factor for increasing the internal N recycling of the agroecosystems and ORG+ needs a substantial improvement in terms of provisioning services (i.e., yield).


2000 ◽  
Vol 15 (3) ◽  
pp. 101-109 ◽  
Author(s):  
Walter A. Goldstein

AbstractThe Wisconsin Integrated Cropping Systems Trial has been comparing different farming systems on two farm sites in southern Wisconsin since 1989. Inexplicable differences in the yields of corn grown in three systems stimulated research on the relationship between yield and the dynamics of root growth. The three systems were continuous corn with mineral fertilizer (CS1), corn—soybean—winter wheat—red clover (CS3), and corn—oat + alfalfa—alfalfa with dairy manure applied (CS5). Four or five sequential root samplings were taken each growing season on two sites for 3 years. Soil monoliths were taken from around the base of the plant and washed out over a 1-mm sieve. Estimates were obtained of the length and health of roots from different nodes that were attached to the crown of the plant. The seasonal accumulation of root length was estimated by summing the maximal root length produced at each root node. Corn grown in monoculture averaged 7.5 Mg of grain/ha, which was similar to corn grown after red clover green manure (7.3 Mg/ha) but less than corn grown after alfalfa with manure (8.5 Mg/ha). Contrary to expectations, corn grown in monoculture averaged 26% more root length over the season than CS3 and 12% more length than CS5. The differences were mostly due to increased production of later sets of roots (nodes 6–9) for the corn in monoculture. However, for the first sets of nodes (seminal—node 5) the percentage of healthy roots was lower in the monoculture system (59%) than in CS3 (63%) or CS5 (76%). The increased root growth associated with corn grown in monoculture may be a response to poor root health. Regressions with root growth accounted for a large amount of the variation in grain yields. Corn grown after alfalfa with manure achieved higher yields with less roots than did corn grown in monoculture. Yields in the former system plateaued at root lengths of 1 cm/cm3 and greater, producing grain yields that ranged from 8 to 10 Mg/ha. Corn grown in CS1 and CS3 showed curvilinear responses with calculated yield maxima of 8.7 and 9.9 Mg/ha at root lengths of 2.12 and 1.74 cm/cm3, respectively. Intensifying the use of rotations and organic manures seemed to increase the ability of the corn rooting system to support grain yields. The cause for this greater efficiency is not yet clear, though root health may be an important factor.


2005 ◽  
Vol 2 (1) ◽  
pp. 77-102 ◽  
Author(s):  
H. Pathak ◽  
C. Li ◽  
R. Wassmann

Abstract. Crop growth simulation models provide a means to quantify the effects of climate, soil and management on crop growth and biogeochemical processes in soil. The Denitrification and Decomposition (DNDC) model was evaluated for its ability to simulate methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions from Indian rice fields with various management practices. The model was calibrated and validated for field experiments in New Delhi, India. The observed yield, N uptake and greenhouse gas (GHG) emissions were in good agreement with the values predicted by the model. The model was then applied for estimation of GHG emissions from rice fields in India using a newly compiled soil/climate/land use database. Continuous flooding of rice fields (42.25 million ha) resulted in annual net emissions of 1.07–1.10, 0.038–0.048 and 21.16–60.96 Tg of CH4-C, N2O-N and CO2-C, respectively, with a cumulated global warming potential (GWP) of 130.93–272.83 Tg CO2 equivalent. Intermittent flooding of rice fields reduced annual net emissions to 0.12–0.13 Tg CH4-C and 16.66–48.80 Tg CO2-C while N2O emission increased to 0.056–0.060 Tg N2O-N. The GWP, however, reduced to 91.73–211.80 Tg CO2 equivalent. The study suggests that the model can be applied for studying the GHG related issues in rice cropping systems of India.


Sign in / Sign up

Export Citation Format

Share Document